For The Latest Medical News, Health News, Research News, COVID-19 News, Pharma News, Glaucoma News, Diabetes News, Herb News, Phytochemical News, Thailand Cannabis News, Cancer News, Doctor News, Thailand Hospital News, Oral Cancer News, Thailand Doctors

BREAKING NEWS
Source: SARS-CoV-2-Heart  Jan 27, 2022  3 years, 6 months, 3 weeks, 7 hours, 35 minutes ago

BREAKING! Indiana University Finds That Transcriptome Of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compromised By SARS-CoV-2 Nsp6, Nsp8 And M Genes!

7261 Shares
facebook sharing button Share
twitter sharing button Tweet
linkedin sharing button Share
BREAKING! Indiana University Finds That Transcriptome Of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compromised By SARS-CoV-2 Nsp6, Nsp8 And M Genes!
Source: SARS-CoV-2-Heart  Jan 27, 2022  3 years, 6 months, 3 weeks, 7 hours, 35 minutes ago
SARS-CoV-2-Heart: Researchers from Indiana University School of Medicine have in a new study discovered that SARS-CoV-2 Nsp6, Nsp8 and M genes compromise the transcriptome of human pluripotent stem cell-derived cardiomyocytes.


 
Cardiac manifestations are commonly observed in COVID-19 patients and prominently contributed to overall mortality.
 
To date, it is already known that human myocardium could be infected by SARS-CoV-2, and human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are susceptible to SARS-CoV-2 infection. However, molecular mechanisms of SARS-CoV-2 gene-induced injury and dysfunction of human CMs remain elusive.
 
The study team found that overexpression of three SARS-CoV-2 coding genes, Nsp6, Nsp8 and M, could compromise transcriptome of hPSC-CMs.
 
Integrated transcriptomic analyses of hPSC-CMs infected by SARS-CoV-2 with hPSC-CMs of Nsp6, Nsp8 or M overexpression identified concordantly activated genes enriched into apoptosis and immune/inflammation responses, whereas reduced genes related to heart contraction and functions.
 
It was further found that Nsp6, Nsp8 or M overexpression induce prominent apoptosis and electrical dysfunctions of hPSC-CMs.
 
Detailed interactome analysis found that Nsp6, Nsp8 and M all interact with ATPase subunits, leading to significantly reduced cellular ATP level of hPSC-CMs.
 
The study team interestingly fund that two existing U.S. FDA-approved drugs, ivermectin and meclizine, could enhance the ATP level, and ameliorate cell death and dysfunctions of hPSC-CMs overexpressing Nsp6, Nsp8 or M.
 
The study findings on the whole uncovered the detrimental impacts of SARS-CoV-2 genes Nsp6, Nsp8 and M on the whole transcriptome and interactome of hPSC-CMs, defined the crucial role of ATP level reduced by SARS-CoV-2 genes in CM death and functional abnormalities, and explored the potentially pharmaceutical approaches to ameliorate SARS-CoV-2 genes-induced CM injury and abnormalities.
 
The study findings were published on a preprint server are currently being peer reviewed. https://www.biorxiv.org/content/10.1101/2022.01.20.477147v1
 
The study team used whole messenger RNA (mRNA)-seq to investigate the overall effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genes Nsp6, Nsp8, and M on the transcriptome of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs).
 
It is already known that low adenosine triphosphate (ATP) levels can affect intracellular Ca2+ signaling and cardiomyocytes (CM) contractility.
 
The SARS-CoV-2-Heart study team also explored pharmacological strategies to increase the cellular ATP levels of hPSC-CMs overexpressing Nsp6, Nsp8, or M.
 
Various heart or cardiac symptoms are prevalent in COVID-19 infected patients, and they play a significant role in total mortality. SARS-CoV-2 can infect the human myocardium, and hPSC-CMs are susceptible to the virus infect ion.
 
The study team overexpressed three SARS-CoV-2 genes - Nsp6, Nsp8, and M - in hPSC-derived CMs. The team cultured human embryonic stem cell (hESC) line H9 and human-induced PSC (hiPSC) line S3 in mTesR1 102 medium and differentiated cardiomyocytes. Whole mRNA-sequencing was used to evaluate total RNA for quality and quantity.
 
The study team sequenced pooled cDNA libraries and generated approximately 30-40M 118 reads per library. Co-immunoprecipitation mass spectrometry (Co-IP-MS) was performed on the total cell proteins extracted, and Western blotting was used to analyze Co-IP protein samples.
 
Detailed data comparison between the gene overexpression and control groups was conducted with the help of an unpaired two-tailed t-test.
 
The research findings showed that ATP hemostasis impairment may play a key role in SARS-CoV-2 gene-induced CM damage in the heart and other organs/tissues that are SARS-CoV-2 targets.
 
Alarmingly, while both Nsp6OE, Nsp8OE, and MOE infection and SARS-CoV-2 infection resulted in concordant transcriptomic changes in hPSC-CMs, SARS-CoV-2 infection was responsible for 70% of differential expression genes (DEGs), implying that the other SARS-CoV-2 genes may also influence the transcriptome of human CMs through different targets or mechanisms.
 
As the SARS-CoV-2 coronavirus-induced pathways were linked to apoptosis, gene transcription, and several metabolic processes, the study findings suggest that at least some other SARS-CoV-2 genes may contribute to CM damage and impact the metabolism of human CMs.
 
The specific vulnerability of hPSC-CMs to individual SARS-CoV-2 genes was determined in this investigation. Nsp6 and Nsp8 are the SARS-CoV-2 non-structural proteins. M, the amplest structural protein in the viral particle, is the structural protein of SARS-CoV-2.
 
The study team discovered that forcing Nsp6, Nsp8, or M expression was enough to cause apoptosis and dysfunction in hPSC-CMs, which phenocopied SARS-CoV-2 infected hPSC-CMs from prior studies.
 
The whole mRNA-seq demonstrated global transcriptional alterations of Nsp6OE, Nsp8OE, and MOE human embryonic stem cell (hESC)-CMs compared to control hESC-CMs, especially with differentially expressed genes enriched in activated cellular damage and immunological responses, as well as reduced calcium/gap junction signaling.
 
The study findings suggest that exogenous SARS-CoV-2 viral genes could significantly affect the gene expression patterns of human CMs, potentially leading to CM abnormalities in patients with COVID-19.
 
The study team discovered that Nsp6, Nsp8, and M interacted with ATPase subunits and affected the cellular ATP level in hPSC-derived CMs by examining their interactome in hESC-CMs.
 
The research findings point to ATP homeostasis playing a key role in SARS-CoV-2-induced tissue damage in CMs and other SARS-CoV-2-sensitive tissue cells in the lung and kidney, while the mechanisms by which Nsp6, Nsp8, or M could hijack ATPase are still unknown.
Typically, heart muscle cells consume a lot of energy due to their constant contractions, making them one of the most sensitive cell types to a lack of ATP supply.
 
The study team examined pharmaceutical techniques to increase cellular ATP levels and revealed that two U.S. Food and Drug Administration (FDA)-approved medications, ivermectin, and meclizine, greatly decreased SARS-CoV-2 gene-induced electrical dysfunctions and cell death in human CMs.
 
Despite the fact that ivermectin is used to treat parasitic infections, it has been discovered to be a mitochondrial ATP protector in CMs and boost mitochondrial ATP generation in human CMs, which was confirmed in this investigation. https://pubmed.ncbi.nlm.nih.gov/28942281/
 
Meclizine an antihistamine may also raise ATP levels in hPSC-CMs, preventing cell death caused by the SARS-CoV-2 gene. It has been reported that meclizine had cardio-protection effect through promoting glycolysis of CMs, which increased ATP synthesis. https://pubmed.ncbi.nlm.nih.gov/20160716/
 
Overall, the study team identified the negative effects of SARS-CoV-2 genes Nsp6, Nsp8, and M on the entire transcriptome and interactome of hPSC-CMs, defined the critical role of ATP level reduction caused by SARS-CoV-2 genes in CM death and functional abnormalities, and investigated potential pharmaceutical approaches to alleviate SARS-CoV-2 genes-induced CM injury and abnormalities.
 
The study findings are critical in terms of understanding the possible causes of cardiac related issues in both COVID-19 patients and also in long COVID and ways to prevent them.
 
For more on SARS-CoV-2-Heart, keep on logging in to Thailand Medical News.
 
 

MOST READ

Aug 12, 2025  6 days ago
Nikhil Prasad
Aug 07, 2025  11 days ago
Nikhil Prasad
Jul 31, 2025  18 days ago
Nikhil Prasad
Jul 29, 2025  20 days ago
Nikhil Prasad
Jul 21, 2025  28 days ago
Nikhil Prasad
Jul 19, 2025  30 days ago
Nikhil Prasad
Jul 17, 2025  1 month ago
Nikhil Prasad
Jul 15, 2025  1 month ago
Nikhil Prasad
Jul 14, 2025  1 month ago
Nikhil Prasad
Jun 28, 2025  2 months ago
Nikhil Prasad
May 10, 2025  3 months ago
Nikhil Prasad
Apr 29, 2025  4 months ago
Nikhil Prasad

FROM THAILAND HOSPITAL NEWS

LATEST ON WORLD COVID-19 NEWS