WARNING! More Research Emerging That COVID-19 Can Cause A Range Of Neurological Complications In COVID-19 Patients Including Those 'Recovered'.

BREAKING NEWS
Source: COVID-19 Drugs & Vaccines  Jun 29, 2020  12 days ago
EXCLUSIVE! COVID-19 Drugs & Vaccines: A List Of All The Research And Developments Underway Encompassing More Than 149 Projects.
EXCLUSIVE! COVID-19 Drugs & Vaccines: A List Of All The Research And Developments Underway Encompassing More Than 149 Projects.
Source: COVID-19 Drugs & Vaccines  Jun 29, 2020  12 days ago
COVID-19 Drugs And Vaccines: As the total number of global confirmed COVID-19 Infections reaches 10,267, 578 and the total confirmed deaths due to the SARS-CoV-2 coronavirus reaches 504, 812 (29th June, 2.45am California), people everywhere and healthcare professionals are getting more anxious as to date there are no real confirmed drugs or treatments protocols that can really treat COVID-19 effectively while the pandemic is actually set to escalate soon.


 
The initial frontrunners such as alpha interferon, Lopinavir / Ritonavir, Oseltamivir, Hydroxychloroquine, Favipiravir, Camostat, Ledipasvir, Neifinavir, Danoprevie, Tenofovir, Azithromycin, Tocilizumab, etc used in various protocols or combos have failed to show any true efficacy against the SARS-CoV-2 coronavirus or its accompanying conditions or symptoms. https://www.thailandmedical.news/news/breaking-covid-19-drugs-us-fda-drug-trial-concludes-that-most-drugs-being-used-including-favipiravir,-lopinavir,-ritonavir,-chloroquine-has-no-effects and https://www.thailandmedical.news/news/breaking-news-study-confirms-that-lopinavir%E2%80%93ritonavir-ineffective-in-treating-covid-19 and https://www.thailandmedical.news/news/favipiravir-studies-involving-animal-models-shows-favipiravir-has-very-weak-effect-on-sars-cov-2-and-not-viable-as-an-effective-therapeutic
 
Gilead’s Remdesivir is highly controversial as no safety studies have ever been conducted on the drug and the drug was hastily approved by the Trump administration with possible ‘negative unethical connotations and acts involved’ but even then a lot of other incompetent European countries are also following suit despite the only supporting medical fact is that the drug can only reduce hospitalization time by 5 days!
 
As more details emerge as to how the SARS-CoV-2 coronavirus affects the human body, it is now recognized that it is not just a normal respiratory disease but is one that affects the various organs and systems of the human body and it is becoming a reality that no single drug will be able to treat COVID-19 but rather a whole list of drugs starting from antivirals to anti-inflammatory drugs, anti-clotting drugs, antibiotics for secondary infections and sepsis and other drugs, all depending on the strains affecting the patients and their underlying medical conditions and how the virus decides to attack their bodies.
 
Many drug repurposing studies have seen promising candidates from cheap and common drugs like ivermectin, colchicine, prazosin, famotidine, niclosamide, disulfiram, celebrex, heparin, inhaled nitric oxide and also dexamethasone, but more research and clinical trials are needed but unfortunately in most cases these is a lack of funding as the big pharma giants do not find it viable to support the research of drugs whose patents have lapsed. (studies on all these drugs can be found in Thailand Medical News, simply use the search function)
 
Then there have been supplements and phytochemicals that have shown certain degrees of efficacy towards treating or being used as adjuvant treatments for COVID-19. Some of these include Vitamin D, Vitamin C, Vitamin B12, Magnesium, Melatonin, Omega-3 fatty acids, Glutathione, NAC (N-Acety Cysteine), Alpha-Lipoic Acid, EGCG (from Green Tea), Silymarin (from Milk Thistle), Selenium, Rutin, Quercetin, Hesperidin Licorice Root, Aswagandha, Artemisia Annua,  Occulus Hirsutus, Andrographis Panniculata , Curcumin, Honeysuckle flowers, the TCM (traditional Chinese Medicine) formulations Qingfei Paidu and Lianhua Qingwen. (Articles and studies on all these can be found on Thailand Medical News.) However once again, more detailed studies and funding are needed to further explore all of these for use in possible COVID-19 treatments.
 
These are the list of 149 drug and vaccine developments and  research being done by various pharmaceutical companies in terms of finding possible drugs, vaccines or treatment protocols for COVID-19.
 
1. BioNTech, Pfizer, and Fosun Pharma
 
Candidate: BNT162 
Type: Potential first-in-class mRNA vaccine designed to induce immunity and prevent COVID-19 infection
 
Status: BioNTech and Pfizer said April 9 they intend to launch their first clinical trials for an mRNA COVID-19 vaccine as soon as the end of April, initially in the United States and Europe across multiple sites. The companies said they will advance multiple candidates.
 
2. CanSino Biologics
 
Candidate: Vaccine for prevention of COVID-19 
Type: Recombinant Novel Coronavirus Disease Vaccine incorporating the Adenovirus Type 5 Vector (Ad5-nCoV)
 
Status: CanSino on April 9 said it and China’s Beijing Institute of Biotechnology, Academy of Military Medical Sciences, plan to initiate phase II clinical trial for Ad5-nCoV in China. The vaccine candidate is the first novel coronavirus vaccine for COVID-19 to advance to Phase I in China. The company has cited results from animal studies showing that the vaccine candidate can induce strong immune response in animal models.
 
3. CytoDyn
 
Candidate: Leronlimab (PRO 140) 
Type: Humanized IgG4 monoclonal antibody. Leronlimab is CytoDyn’s lead candidate, and is a CCR5 antagonist for patients who experience respiratory illness as a result of COVID-19 with potential for multiple therapeutic indications.
 
Status:  CytoDyn has initiated enrollment in a planned 75-patient Phase II trial for leronlimab treatment of COVID-19 patients with mild-to-moderate indications and under the same IND is also proceeding with its second COVID-19 clinical trial, a planned 342-patient Phase IIb/III study in critically ill COVID-19 patients, with the primary endpoint being the mortality rate at 14 days. CytoDyn and Longen China Group has said they will begin exploring leronlimab as a potential treatment for coronavirus as well as cancer.
 
4. Distributed Bio
 
Candidates: Antibodies bioengineered to fight COVID-19 
Type: Broadly neutralizing antibodies based on the company’s SuperHuman platform, which according to the company is the world’s most advanced computationally optimized human antibody library for antibody discovery.
 
Status:  The company is working to extract five SARS-CoV-2 antibodies and mutate them into 1 billion different types to see whether any of the antibodies bind to the virus that causes COVID-19.If a potential antibody is identified this month, it could be mass produced in August or September. 
 
5. ncyte and Novartis
 
Candidate: Jakafi® / Jakavi® (ruxolitinib)
Type: Janus kinase (JAK1/JAK2) inhibitor first approved by the FDA in 2011, with indications in polycythemia vera, myelofibrosis, and acute graft-versus-host disease. Marketed as Jakafi in the U.S. by Incyte, and as Jakavi outside the U.S. by Novartis.
 
Status: In the U.S., Incyte added, it intends to begin an open-label emergency Expanded Access Program (EAP) that will allow eligible patients with severe COVID-19 associated cytokine storm to receive Jakafi while it is being studied for that indication. The company added that it is increasing manufacturing efforts to respond to anticipated supply needs related to its COVID-19 studies. Outside the U.S., Novartis has established an international compassionate use program for eligible patients, and said it is working to manage the anticipated increase in COVID-19 related requests for Jakavi without interrupting access for patients using the drug for its authorized indications.
 
6. Inovio Pharmaceuticals and Beijing Advaccine Biotechnology
 
Candidate: INO-4800 
Type: DNA vaccine
 
Status:  Last month, Inovio joined biologics CDMO Ology Bioservices on March 24 to announce that Ology was awarded an $11.9 million Department of Defense (DoD) contract to work with Inovio on DNA technology transfer to rapidly manufacture INO-4800 and deliver it to DoD for upcoming clinical trials. Inovio said it received a $5 million grant from the Bill and Melinda Gates Foundation to accelerate testing and scale-up of CELLECTRA® 3PSP, a hand-held smart device for the intradermal delivery of INO-4800. Inovio is partnering with Beijing Advaccine Biotechnology on a Phase I trial in China in parallel with the company’s clinical development efforts in the U.S. to develop INO-4800 as a coronavirus treatment. Inovio will develop INO-4800 through Phase I testing in the U.S., and has launched preclinical testing for clinical product manufacturing. INO-4800 development is also supported by a $9-million grant from the Coalition for Epidemic Preparedness Innovations (CEPI).
 
7. Janssen Pharmaceutical Cos. (J&J) and BARDA
 
Candidates: Lead vaccine candidate and two backups to prevent COVID-19 
Type: Not specified, but based on vaccine constructs created and tested by J&J with Beth Israel Deaconess Medical Center (BIDMC), part of Harvard Medical School, using Janssen’s AdVac® technology.
 
Status: Johnson & Johnson expects to start Phase I human trials by September for its lead COVID-19 vaccine candidate, and has expanded its vaccine R&D and clinical testing partnership between J&J’s Janssen Pharmaceutical Cos. and the Biomedical Advanced Research and Development Authority (BARDA) that is valued at over $1 billion.J&J said it aims to have clinical data available by year’s end on the safety and efficacy of its lead COVID-19 vaccine candidate, an accelerated development and testing timeframe it said would allow vaccine availability for emergency use in early 2021.
 
8. Moderna
 
Candidate: mRNA-1273
Type: Novel lipid nanoparticle (LNP)-encapsulated mRNA vaccine encoding for a prefusion stabilized form of the Spike (S) protein.
 
Status: Moderna’s platform is based on injecting mRNA into cells to produce protein in human cells. Moderna dosed the first patient in a Phase I open-label, dose-ranging trial of mRNA-1273 (NCT04283461) in males and non-pregnant females, 18 to 55 years old, occurring at Kaiser Permanente Washington Health Research Institute in Seattle. The 45-patient study will assess the safety and reactogenicity of a 2-dose vaccination schedule of mRNA-1273, given 28 days apart, across 3 dosages in healthy adults. The first batch of mRNA-1273 was shipped in February to the VRC, which partnered with Moderna in designing the vaccine.
 
9. Regeneron Pharmaceuticals and Sanofi
 
Candidate: Kevzara® (sarilumab)
Type: Interleukin-6 (IL-6) receptor antagonist approved by the FDA in 2017 to treat adults with moderately to severely active rheumatoid arthritis who have had an inadequate response or intolerance to one or more disease-modifying antirheumatic drugs.
 
Status: Regeneron Pharmaceuticals and Sanofi said March 30 they dosed the first ex-U.S. patient in the second multi-center, double-blind, Phase II/III trial (NCT04315298) conducted as part of the Kevzara COVID-19 program assessing Kevzara® (sarilumab) in severe COVID-19 patients. The 300-patient second trial will assess the safety and efficacy of adding a single intravenous dose of Kevzara to usual supportive care, compared to supportive care plus placebo.
On March 16, the companies said they had launched the first Phase II/Phase III clinical trial of Kevzara in the U.S. in severe COVID-19 patients. Up to 400 adults hospitalized with serious complications from COVID-19 will be assessed in that study, set to begin in medical centers in New York. The global clinical program has been launched in Italy, Spain, Germany, France, Canada, Russia and the U.S. Regeneron leads clinical studies in the U.S., while Sanofi does so overseas.
 
 
10 .University of Pittsburgh
 
Candidate: PittCoVacc, short for “Pittsburgh Coronavirus Vaccine” 
Type: Microneedle array (MNA)-delivered recombinant protein subunit vaccine targeting SARS-CoV-2.
 
Status: Pitt researchers on April 1 published a study in the open access journal EBioMedicine detailing their development of PittCoVacc.Louis Falo, MD, PhD, and Andrea Gambotto, MD, were co-senior authors of the study, which reported that PittCoVac generated a surge of antibodies against SARS-CoV-2 within two weeks of MNA delivery when tested in mice. The MNA is a fingertip-sized patch of 400 small needles made of sugar and protein pieces, designed to deliver the spike protein pieces into the skin, where the needles dissolve. The microneedle array can sit at room temperature until it is needed.Pitt said its researchers are applying for an IND approval from the FDA, and aim to start a Phase I human clinical trial in the next few month
 
11. Vir Biotechnology and Alnylam
 
Candidates: Small interfering RNA (siRNA) treatments for up to nine infectious disease targets including three host factors required for SARS-CoV-2 infection. 
Type: siRNA treatment(s) to be identified by Alnylam that target highly conserved regions of coronavirus RNAs. Alnylam has designed and synthesized over 350 siRNAs targeting all available SARS-CoV and SARS-CoV-2 genomes, which will be screened in in vitro potency assays, the companies said.
 
Status: Vir and Alnylam said April 2 they are again expanding their 2-1/2-year-old siRNA collaboration, agreeing to develop novel siRNAs for up to nine infectious disease targets. The companies agreed to advance up to three additional host factor-targeting candidates to treat SARS-CoV-2 and potentially other coronaviruses. The companies named two of the three targets, angiotensin converting enzyme-2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), adding that the third may emerge from Vir’s functional genomics work.
 
12. Vir Biotechnology, Biogen, and NIAID (with WuXi Biologics and Xencor)
 
Candidates: Two versions of a human monoclonal antibody. 
Types: Monoclonal antibody versions engineered through Vir’s platform and designed to neutralize SARS-CoV-2 live virus by binding to an epitope on SARS-CoV-2 that is shared with SARS-CoV-1 (SARS). That, according to VIr, indicates that the epitope is highly conserved, and thus makes it harder for escape mutants to develop.Each version has a half-life extending alteration to potentially extend the time over which the antibody provides protection.One version has been developed with a second “vaccinal” mutation designed to increase short-term potency; the other version doesn’t have that mutation. The mutation allows the antibody to function both as a therapeutic and a vaccine, Vir says. The lead candidates are among additional antibodies identified by Vir that bind to different sites, and therefore could be used in combination with the lead development candidates.
 
Status: Vir Biotechnology on March 25 said it intended to move “as soon as possible” both versions of its lead antibody candidate into human Phase I/II trials, after two separate labs confirmed that the antibody neutralized SARS-CoV-2. The trial is expected to start within 3–5 months.
 
13. Vir Biotechnology and GlaxoSmithKline (GSK)
 
Candidates: Antibodies, vaccines, and functional genomics products 
Type: Antiviral antibodies based on Vir’s proprietary monoclonal antibody platform technology; Vaccines based on GSK’s vaccine technologies; Functional genomics products based on genome-wide CRISPR screening of host targets
 
Status: GSK agreed to make a $250 million equity investment in Vir under an R&D collaboration designed to advance COVID-19 candidates into Phase II clinical trials later this year, the companies said April 6. The companies agreed to identify new anti-viral antibodies, and study existing ones, to prevent and treat COVID-19 and future coronaviruses.
 
14. Alexion Pharmaceuticals
 
Candidate: Soliris® (eculizumab)
Type: Complement inhibitor approved for paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS).
 
Status: Alexion said March 24 it had discussed possible options to investigate Soliris in COVID-19 with global health authorities, in order to better understand the role of terminal complement inhibition in managing the severe pneumonia associated with the virus. Alexion added that it had provided Soliris as an experimental emergency treatment for a small number of patients with COVID-19 infection and severe pneumonia at the request of physicians, and in accordance with relevant national regulatory agencies.
 
15. Amgen and Adaptive Biotechnologies
 
Candidate: Antibodies targeting SARS-CoV-2 to potentially prevent or treat COVID-19 
Type: Fully-human neutralizing antibodies to be discovered and developed
 
Status: Amgen and Adaptive Biotechnologies said April 2 they will partner to discover and develop antibodies through a collaboration intended to combine Adaptive Bio’s immune medicine platform for identifying virus-neutralizing antibodies with Amgen’s expertise in immunology, antibody engineering, and novel antibody therapy development. Adaptive Bio will use its high throughput platform to rapidly screen the B cell receptors from individuals who have recovered from COVID-19, enabling identification of tens of thousands of naturally occurring antibodies. Amgen will select, develop and manufacture antibodies designed to bind and neutralize SARS-CoV-2. Amgen subsidiary deCODE Genetics in Iceland will provide genetic insights from patients who were previously infected with COVID-19.
 
16. APEIRON Biologics
 
Candidate: APN01
Type: Recombinant human angiotensin-converting enzyme 2 (rhACE2) developed to treat acute lung injury, acute respiratory distress syndrome, and pulmonary arterial hypertension. APN01 is designed to imitate the human enzyme ACE2 so that the virus can no longer infect the cells, as SARS-CoV-2 binds to soluble ACE2/APN01 instead of ACE2 on the cell surface. APN01 is also designed to reduce harmful inflammatory reactions in the lungs and protects against acute lung injury/acute respiratory distress syndrome (ALI/ARDS).
 
Status: APEIRON said April 2 it received regulatory approvals in Austria, Germany, and Denmark to initiate a Phase II clinical trial of APN01 to treat COVID-19 (NCT04335136). The trial aims to compare APN01 to placebo in up to 200 severely infected COVID-19 patients at 10 sites. The first patients are expected to be dosed shortly, according to the company. APN01 has been shown to be safe and well-tolerated in a total of 89 healthy volunteers and patients with pulmonary arterial hypertension (PAH) and ALI/ARDS in previously completed Phase I and Phase II clinical trials.
 
17. Athersys
 
Candidate: MultiStem® for acute respiratory distress syndrome (ARDS)
Type: Adult-derived “off-the-shelf” therapy under development for several neurological and cardiovascular diseases, as well as inflammatory, immune and related disorders. Developed from Multipotent Adult Progenitor Cells (MAPC®) obtained from the bone marrow of healthy, consenting adult donors.
 
Status:  In March, Van Bokkelen told GEN the company was planning to launch the Phase III trial “as soon as possible.” The company has won the Biomedical Advanced Research and Development Authority (BARDA)’s designation as a “Highly Relevant” program for COVID-19 based on earlier positive results for MultiStem in ARDS, plus the FDA’s Fast Track designation for the MultiStem clinical program in ARDS the only Fast Track designation for an ARDS treatment.
 
18. Celularity and Sorrento Therapeutics
 
Candidate: CYNK-001
Type: Allogeneic, off-the-shelf Natural Killer (NK) cell therapy developed from placental hematopoietic stem cells; also being developed in multiple myeloma, acute myeloid leukemia, glioblastoma multiforme and various blood and solid tumors.
 
Status: Celularity on April 2 won FDA clearance for its IND of CYNK-001 in adults with COVID-19, allowing the company to begin a Phase I/II trial of up to 86 patients.In a February presentation, Celularity stated that its anti-COVID-19 construct had been generated within weeks, and that its DAR-T and DAR-NK cells “will soon be produced for anti-COVID-19 activity testing.” The companies in January launched a clinical and manufacturing collaboration designed to expand the therapeutic use of Celularity’s CYNK-001 to COVID-19. Sorrento and Celularity agreed to assess CYNK-001 as a potential novel therapy for coronaviruses, specifically SARS-CoV-2.
 
19. Cobra Biologics and Karolinska Institutet
 
Candidate: DNA vaccine against COVID-19 
Type: Vaccine designed to deliver DNA to patient muscle to generate a viral antigen on which the immune system will react. The project will use Cobra’s 50L DNA suite in Sweden to support vaccine development by producing plasmid DNA in accordance with GMP.
 
Status: Cobra and Karolinska Institutet said March 30 they were awarded €3 million ($3.3 million) in emergency funding through the EU’s Horizon 2020 funding program for R&D and Phase I clinical trial testing of a DNA vaccine against COVID-19, as part of the OPENCORONA consortium. In addition to Karolinska Institutet, partners in the consortium also include Karolinska University Hospital, the Public Health Agency of Sweden (FoHM), IGEA, Adlego, and Giessen University.
 
20. CureVac
 
Candidate: Vaccine
Type: mRNA-based coronavirus treatment based on company’s vaccine platform
 
Status: CureVac on March 17 told reporters in a telephone briefing that it was committed to launching animal trials of its mRNA-based COVID-19 vaccine in April, and clinical trials in humans by early summer. The update came a day after the European Commission offered up to €80 million ($88 million) toward scaling up development and productions of the vaccine. The Coalition for Epidemic Preparedness Innovations (CEPI) awarded the company up to $8.3 million in January for accelerated vaccine development, manufacturing and clinical tests.
 
21. Eli Lilly and AbCellera
 
Candidates: Antibodies to treat and prevent COVID-19 
Type: Anti-SAR-CoV-2 Antibodies based on AbCellera’s rapid pandemic response platform
 
Status: Eli Lilly and AbCellera said March 13 that they will partner to co-develop the most promising of 500+ unique fully human antibody sequences identified in a blood sample from one of the first U.S. patients to recover from COVID-19. AbCellera will tap into the expertise of the Dale and Betty Bumpers Vaccine Research Center of the NIH’s National Institute of Allergy and Infectious Diseases (NIAID), which will identify the antibodies that bind the pandemic strain of SARS-CoV-2 the best. AbCellera and Lilly committed to equally share initial development costs towards a treatment, after which Lilly has agreed to oversee all further development, manufacturing and distribution. If successful, Lilly will work with global regulators to bring a treatment to patients. Globally, Lilly has joined a cross-industry collaboration and the Bill & Melinda Gates Foundation to accelerate the development, manufacturing and delivery of vaccines, diagnostics and treatments for COVID-19.
 
22. I-Mab
 
Candidate: TJM2 (TJ003234) 
Type: Neutralizing antibody against human granulocyte-macrophage colony stimulating factor (GM-CSF)
 
Status: I-Mab said April 3 that the FDA cleared its IND to initiate clinical study of TJM2 as a treatment for cytokine release syndrome associated with severe illness caused by COVID-19. I-Mab also obtained central institutional review board (IRB) approval from the Western Institutional Review Board on the same day. The planned trial is a multi-center, randomized, double-blind, placebo-controlled, three-arm study designed to assess the safety, tolerability and efficacy of TJM2 in reducing the severity of complications as well as levels of multiple cytokines in patients with severe COVID-19.I-Mab added that it submitted an IND application to South Korea’s Ministry of Food and Drug Safety for a similar study in severe COVID-19 patients in South Korea.
 
23. Karyopharm Therapeutics
 
Candidate: XPOVIO® (selinexor)
Type: First-in-class, oral selective inhibitor of nuclear export (SINE), designed to block the cellular protein XPO1. Selinexor was granted FDA accelerated approval in July 2019 in combination with dexamethasone as a treatment for some adults with relapsed refractory multiple myeloma.
 
Status: Karyopharm said April 7 it will initiate a global randomized clinical trial evaluating low dose oral selinexor in hospitalized patients with severe COVID-19. The company noted that SINE compounds have been shown to disrupt the replication of multiple viruses in vitro and in vivo, and to mediate anti-inflammatory and anti-viral effects, including respiratory infections, in several animal models. Karyopharm cited a preprint study published March 20 in bioRxiv identifying SINE compounds as having the potential to interfere with key host protein interactions with SARS-CoV-2. The company said it is still on track to submit a supplemental NDA to the FDA in combination with once-weekly Velcade® (bortezomib) and low-dose dexamethasone as a new second line treatment for patients with relapsed or refractory multiple myeloma, based on the BOSTON Phase III trial (NCT03110562).
 
24. Mesoblast
 
Candidate: RYONCIL™ (Remestemcel-L)
Type: Allogeneic mesenchymal stem cell (MSC) product candidate, now under FDA priority review for treating pediatric steroid-refractory acute graft versus host disease (aGVHD), with a Prescription Drug User Fee Act (PDUFA) action date of September 30, 2020.
 
Status: Mesoblast said April 6 it received FDA clearance for its IND application to treat patients with acute respiratory distress syndrome (ARDS) caused by COVID-19 with intravenous infusions of remestemcel-L, nearly a month after disclosing March 10 it was in active discussions with government and regulatory authorities, medical institutions and biopharma companies about assessing remestemcel-L in that indication. The company has cited a clinical study published in February which reported that allogeneic MSCs cured or significantly improved functional outcomes in all seven treated patients with severe COVID-19 pneumonia. Mesoblast also cited post-hoc analyses of a study in 60 chronic obstructive pulmonary disease (COPD) patients submitted for presentation at a future conference, showing significantly reduced inflammatory biomarkers, and significantly improved pulmonary function in patients with elevated inflammatory biomarkers. The same inflammatory biomarkers are also elevated in COVID-19.
 
25. Pfizer
 
Candidates: Antiviral compounds 
Types: Unspecified
 
Status: Pfizer on March 13 restated earlier plans to develop its own antivirals against COVID-19 as well as collaborate with BioNTech on an mRNA vaccine to prevent the disease. The pharma giant also articulated five principles it said would govern its drug and vaccine development activity: Sharing tools and insights; creating “a SWAT team” of experts focused solely on fighting the pandemic; applying its drug development expertise; offering any excess manufacturing capacity to support other drug and vaccine developers; and building a “cross-industry rapid response team of scientists, clinicians and technicians” to improve response to future epidemics.Earlier in March, Pfizer said it completed a preliminary assessment of antiviral compounds that were previously in development and that inhibited the replication of coronaviruses similar to the one causing COVID-19 in cultured cells. Pfizer said it was engaging with a third party to screen these compounds under an accelerated timeline and expected to have results back by the end of March.“Toxicology studies would then need to be completed prior to any clinical development, but if successful, Pfizer hopes to be in the clinic by no later than the end of 2020,” the company added.
 
26. Regeneron Pharmaceuticals
 
Candidate: Antibody cocktail therapy 
Type: Combination of neutralizing monoclonal antibodies leveraging Regeneron’s monoclonal antibody discovery platform called VelocImmune®, part of the company’s VelociSuite™ technologies.
 
Status: Regeneron on March 17 announced making progress in developing an antibody cocktail therapy against COVID-19, saying that it isolated hundreds of virus-neutralizing, fully human antibodies from its VelocImmune mice, genetically-modified to have a human immune system—as well as antibodies from humans who have recovered from COVID-19. From these antibody candidates, Regeneron said, it will select the top two antibodies for a ‘cocktail’ treatment “based on potency and binding ability to the SARS-CoV-2 spike protein, as well as other desirable qualities.” Regeneron said it is working to produce hundreds of thousands of prophylactic doses per month by the end of summer, and smaller quantities for initial clinical testing at the start of the summer. Regeneron has also said it is developing the combination of REGN3048 and REGN3051 as a COVID-19 treatment. The combination completed a 48-patient Phase I trial in MERS-CoV last year (NCT03301090.)
 
27. The University of Hong Kong (HKU)
 
Candidate: Vaccine against COVID-19 
Type: Vaccine candidate based on the established flu-based DelNS1 live attenuated influenza virus (LAIV) platform, with the deletion of the key virulent element and immune antagonist, NS1, from the viral genome, adapted to express the surface protein of SARS-CoV-2. The vaccine uses flu vector to express a specific antigen to induce immunity targeting the critical element of the Receptor Binding Domain (RBD) of SARS-CoVs.
 
Status:
 On March 16, HKU’s State Key Laboratory for Emerging Infectious Diseases said it received an initial $620,000 from the Coalition for Epidemic Preparedness Innovations (CEPI) toward vaccine development. HKU researchers previously completed a proof-of-concept study testing their flu-based RBD vaccine system using a MERS-CoV animal infection model, and reported that vaccination with DelNS1-MERS-RBD LAIV provided full protection from pathogenic MERS-CoV. The team is currently conducting similar proof-of-concept studies in multiple animal models.
 
28. AI Therapeutics
 
Candidate: LAM-002 (apilimod)
Type: Selective first-in-class, oral PIKfyve kinase inhibitor being developed in B-cell non-Hodgkin lymphoma and amyotrophic lateral sclerosis/frontotemporal dementia
 
Status: AI Therapeutics co-founder Jonathan Rothberg, PhD, told media the company is preparing INDs for submission to the FDA, with the goal of launching clinical trials of LAM-002 in COVID-19 in the second quarter. He citing new data that he said showed the drug was effective in cell assays in inhibiting the entry of SARS-CoV-2 through its first-in-class molecular mechanism. SAM-002 can also be combined with other antiviral drugs, which typically target other molecular mechanisms, like viral replication. AI is looking to combine SAM-002 with Gilead Sciences’ Remdesivir, said Rothberg. AI is collaborating with Yale University Medical School (clinical studies), and Zhejiang University (nonclinical). AI Therapeutics and collaborators have shown that in cell cultures, LAM-002 was effective alone and lowered the level of SARS-CoV-2 virus even more when combined with Gilead Sciences’ Remdesivir.
 
29. AIM ImmunoTech
 
Candidate: Ampligen® (rintatolimod)
Type: Immune modulator indicated for severe chronic fatigue syndrome
 
Status: AIM ImmunoTech said April 6 it entered into a Material Transfer and Research Agreement (MTA) with Shenzhen Smoore Technology to research in China the efficacy of Smoore’s vaping device using Ampligen, to enable inhalation of the drug deep into the lungs at the first signs of COVID-19. In March, the company said it was in talks with regulators in the Netherlands, where Ampligen was recently used to treat pancreatic cancer patients, to explore expedited preclinical and clinical trials of Ampligen. Protocols for those trials are in final stages of development. AIM ImmunoTech also said it was actively seeking investigators and sites for clinical trials—and disclosed talks with a potential partner in Argentina, GP-Pharm, to advance Ampligen in COVID-19. The drug is approved in Argentina to treat myalgic encephalomyelitis/chronic fatigue syndrome.
 
30. AlloVir and Baylor College of Medicine
 

Candidates: T-cell immunotherapies
Type: Allogeneic, off-the-shelf, virus specific T-cell therapy designed to restore natural T-cell immunity to fight off viral infections and diseases in immunocompromised patients, including recipients of stem cell and solid organ transplants
 
Status: Allovir said March 23 it is expanding its R&D collaboration with Baylor College of Medicine to include the discovery and development of allogeneic, off-the-shelf, virus specific T-cell therapies to combat SARS-CoV-2. The company aims to develop a therapy for multiple coronaviruses including SARS-CoV and MERS-CoV that can be used as a standalone treatment or incorporated into its multi-respiratory virus therapy candidate, ALVR106. The allogenic, off-the-shelf multi-specific T cell (VST) is being developed as a treatment for respiratory syncytial virus (RSV), influenza, parainfluenza virus (PIV), and human metapneumovirus (HMPV).
 
31. Altimmune and University of Alabama at Birmingham (UAB)
 

Candidate: AdCOVID 
Type: Single-dose, intranasal vaccine designed to provide systemic immunity. Altimmune based the vaccine on proprietary platform technology that was applied in developing NasoVAX™, the company’s influenza vaccine candidate that showed positive Phase IIa results.
 
Status: Altimmune said March 30 it will partner with UAB to develop AdCOVID. The company said it is preparing for immunogenicity studies and manufacture of Phase I clinical trial material. Initially, Altimmune will work with UAB investigators on preclinical animal studies and characterization of the vaccine immunogenicity with the goal of enabling a Phase I trial in the third quarter. On February 28, Altimmune said it completed the design and synthesis of the vaccine, and was “actively engaged in discussions with a number of potential partners.” Six UAB labs will work with Altimmune on the urgent collaboration, the University said.
 
 
32. Ansun Biopharma
 
Candidate: DAS181 
Type: Recombinant sialidase with broad antiviral properties for the treatment of severe COVID-19
 
Status: Ansun on April 2 reported positive preliminary data from an investigator-initiated trial of DAS181 (NCT04324489), conducted in collaboration with the Renmin Hospital of Wuhan University. The study evaluated a 10-day treatment regimen of nebulized DAS181 administered to four patients with severe bilateral viral pneumonia and hypoxemia. In the study’s first 14 days, the first two patients no longer required supplemental oxygen, and showed stabilized vital signs, increased oxygen saturation, and resolution of infiltrates on chest CT scans, according to Zuojiong Gong, MD, PhD, and Ke Hu, MD, the study’s principal investigators at Renmin Hospital. They told Thailand Medical News, “The third patient, who had been a persistent SARS-CoV-2 carrier for more than 33 days, was completely virus-free before the end of the 10-day DAS181 regimen and met all discharge criteria, and the fourth is currently undergoing treatment and showing positive trends.”
 
33. Baylor College of Medicine
 
Candidate: Vaccines against COVID-19 
Types: Recombinant protein-based vaccine consisting of the receptor binding domain (RBD) of the spike protein of the coronavirus, designed to bind to receptors found deep in the host lung tissue.
 
Status: Peter J. Hoetz, MD, PhD, professor and dean of the National School of Tropical Medicine at Baylor College of Medicine (BCM), told China’s state news agency Xinhua on March 17 that his group at BCM’s Texas Children’s Hospital Center for Vaccine Development was working to develop a vaccine in collaboration with U.S. institutions that included the University of Texas Medical Branch, and the New York Blood Center, as well as the Virology Center at Fudan University in Shanghai. The RBD for SARS has already been manufactured for clinical use, BCM said, and additional preclinical tests are being conducted to advance it into clinical trials to determine if it is safe, sufficiently protective, or cross-reactive against COVID-19. The Baylor College of Medicine teams are also developing the RBD from COVID-19.
 
34.  Brii Biosciences, Tsinghua University, and Third People’s Hospital of Shenzhen
 

Candidates: “Multiple” monoclonal antibodies to prevent and treat COVID-19 
Type: Fully human neutralizing monoclonal antibodies from patients in China who have recovered from COVID-19
 
Status: Brii Bio joined Tsinghua University and Third People’s Hospital of Shenzhen on March 31 to announce a partnership and license agreement to discover, develop, manufacture and commercialize fully human neutralizing monoclonal antibodies against COVID-19. The collaboration aims to achieve an accelerated six-month timeline from the selection of a lead development candidate to first-in-human clinical trials, with potential for additional timeline acceleration, the partners said.The partners also cited research by Linqi Zhang at Tsinghua University and Professor Zheng Zhang at Third People’s Hospital of Shenzhen, in a preprint published March 26 in bioRxiv. The researchers characterized antibody responses in eight COVID-19 patients and isolated 206 monoclonal antibodies specific to the SARS-CoV-2 receptor-binding domain. Of the antibodies with potential therapeutic potential against SARS-CoV-2, the most potent were P2C-1F11 and P2B-2F6.
 
35. British American Tobacco (Kentucky BioProcessing)
 

Candidate: Vaccine 
Type: Vaccine based on BAT’s proprietary, fast-growing tobacco plant technology
 
Status: British American Tobacco’s Kentucky biotech subsidiary, Kentucky BioProcessing (KBP), said April 1 it has developed a potential COVID-19 vaccine that is in preclinical testing. Subject to finding partners and gaining government support, KBP said, it could manufacture between 1 and 3 million doses of the vaccine per week, starting in June. Work on the COVID-19 vaccine project will be carried out on a not-for-profit basis, according to KBP, which is a commercial entity. KBP said it recently cloned a portion of COVID-19’s genetic sequence which led to the development of a potential antigen. The antigen was inserted into tobacco plants for reproduction and, once the plants were harvested, the antigen was then purified, and is now undergoing preclinical testing.
 
 
36. CalciMedica
 
Candidate: CM4620-IE
Type: Potent and selective small molecule CRAC channel inhibitor designed to prevent CRAC channel overactivation,
 
Status: CalciMedica on April 9 said it received a “Study May Proceed” letter from the FDA allowing it to study CM4620-IE in patients with severe COVID-19 pneumonia who are at risk for progression to acute respiratory distress syndrome (ARDS).The company said it plans to enroll 60 patients with severe COVID-19 pneumonia in an open-label Phase II clinical study comparing 40 patients dosed with CM4620-IE plus standard of care to 20 patients assigned to standard of care alone. The first patients are being enrolled at Regions Hospital in St. Paul, MN, with additional patients are expected to be enrolled within the next week at Henry Ford Hospital in Detroit. Additional study sites are being evaluated.
 
37. Capricor Therapeutics
 
Candidate: CAP-1002 
Type: Cardiac cell therapy consisting of allogeneic cardiosphere-derived cells. The cells are designed to function by releasing exosomes that are taken up largely by macrophages and T-cells and begin a cycle of repair.
 
Status: Capricor on April 3 said it has begun providing CAP-1002 to patients with advanced COVID-19 under the compassionate use pathway.  Two patients were treated last week at “a leading healthcare center” in Los Angeles, with additional patients planned in coming weeks. Capricor cited previously published preclinical data showing that CAP-1002 mitigated the release of anti-inflammatory cytokines as well as macrophage activation in a number of models of inflammation including sepsis and autoimmune diseases. Capricor added that it has submitted an expanded-access IND application to the FDA, seeking to investigate using CAP-1002 in certain COVID-19 patients. The application is under review.
 
38. CEL-SCI
 
Candidate: Ligand Antigen Epitope Presentation System (LEAPS) peptides
Type: Immunotherapy based on CEL-SCI’s patented LEAPS peptide platform technology, directed towards antigens within the NP protein of COVID-19 that elicit cytolytic T cell responses. Such responses attack the virus infected cellular “factories” within the infected host in order to eliminate the source of virus and help subdue the infection, CEL-SCI reasons. LEAPS peptides use conserved regions of coronavirus proteins to stimulate protective cell mediated T cell responses and reduce viral load.
 
Status: CEL-SCI on March 23 said it signed a collaboration agreement with the University of Georgia’s Center for Vaccines and Immunology to develop a LEAPS COVID-19 immunotherapy designed to treat patients at highest risk of dying from COVID-19. The collaboration will commence with pre-clinical studies based on the experiments previously conducted with LEAPS immunotherapy in collaboration with the National Institutes for Allergies and Infectious Diseases (NIAID) against another respiratory virus, H1N1, involved in the 2009 H1N1 flu pandemic. The proposed LEAPS peptides for the COVID-19 study are directed towards antigens within the NP protein of SARS-Cov-2 virus that elicit cytolytic T cell responses. Unlike the viral glycoprotein “spike” antigens which are important for antibody-based vaccines, these NP-antigens are less variable between viral strains and less likely to change in response to antibodies elicited by prior infection or other vaccines, according to CEL-SCI. Cytolytic T cell responses attack the virus infected cellular “factories” within the infected host in order to eliminate the source of virus and help subdue the infection. Also in March, CEL-SCI said it will develop an immunotherapy to treat COVID-19 and other diseases for which disease associated antigenic peptide(s) sequences have already been identified.
 
39. Celltrion Healthcare
 
Candidate: Antiviral treatment targeting COVID-19 
Type: Monoclonal antibody to be selected
 
Status: Celltrion Group said April 3 it had begun the second phase of development for an antiviral treatment, in which it will partner with the Korea Centers for Disease Control and Prevention (KCDC) to screen antibodies to find the ones most effective in neutralizing SARS-CoV-2. The company last month secured 300 different types of antibodies that bind to the antigen last month during the first phase, creating a library of antibodies using the blood of recovered patients in South Korea. Celltrion said it anticipates the candidate screening for the therapeutic monoclonal antibody will be complete by mid-April, sooner than originally expected. Upon candidate selection, “We will roll out mass production of the therapeutic antibody treatment, with a view to starting human trials this July,” Ki-Sung Kwon, Head of Celltrion’s R&D Unit, told Thailand Medical News.
 
40. Clover Biopharmaceuticals and Dynavax Technologies
 

Candidate: Vaccine to prevent COVID-19 
Type: Combination of Clover’s protein-based coronavirus vaccine candidate (COVID-19 S-Trimer), plus Dynavax’s proprietary toll-like receptor 9 (TLR9) agonist adjuvant CpG 1018
 
Status: Dynavax and Clover on March 24 said they launched a research collaboration to develop a vaccine candidate to prevent COVID-19. Clover agreed to advance the evaluation of COVID-19 S-Trimer in preclinical studies. The companies said Clover could rapidly scale-up and produce large-quantities of a new coronavirus vaccine since it has one of the largest in-house, commercial-scale cGMP biomanufacturing capabilities in China. Clover said it applied its patented Trimer-Tag© technology to design the viral spike (S)-protein construct and complete its gene synthesis once the genomic DNA sequence of SARS-CoV-2 became public in late January 2021.
 
41.Cocrystal and Kansas State University Research Foundation
 

Candidates: Broad-spectrum antiviral compounds 
Type: Protease inhibitors
 
Status: Cocrystal on March 6 said it was “aggressively” pursuing the development of novel antiviral compounds to treat Coronavirus infections using its established proprietary drug discovery platform. The company is leveraging patent rights and antiviral compounds it has licensed from Kansas State University Research Foundation (“KSURF”) to treat Coronavirus as well as Norovirus, an agreement announced in February. Cocrystal said its primary goal was to advance its program into preclinical development, and pursue collaborations as the program progressed through clinical phases.
 
42. CSL Behring and SAB Biotherapeutics
 
Candidate: SAB-185
Type: High-potency immunotherapy delivering human polyclonal antibodies targeted to SARS-CoV-2, generated from SAB’s proprietary DiversitAb™ platform
 
Status: CSL Behring and SAB Biotherapeutics said April 8 they will partner to develop SAB-185, which they said is expected to be ready for clinical evaluation as early as summer 2020.CSL Behring has provided seed funding to offset some of SAB’s initial development costs, while SAB earlier this year secured approximately $7.2 million in funding from the Biomedical Advanced Research and Development Authority (BARDA) through an interagency agreement with the Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO – CBRND). That funding will support SAB efforts to complete manufacturing and preclinical studies. CSL Behring has agreed to commit clinical, regulatory, manufacturing and supply chain expertise and resources to deliver the therapeutic to the market as soon as possible, on terms to be agreed with SAB.
 
43. Cynata Therapeutics
 
Candidate: Cell therapy targeting COVID-19
Type: Mesenchymal stem cell (MSC) based treatments
 
Status: Cynata and CEO Ross Macdonald have discussed the company’s therapeutic approach in a March 11 statement and recent interviews. That approach uses MSC to treat complications of COVID-19 such as sepsis, pneumonia and acute respiratory distress syndrome (ARDS). The company said it has achieved positive preclinical data for MSC therapies in sepsis and lung disease, and is collaborating with the Critical Care Research Group at Prince Charles Hospital in Brisbane, Australia, to investigate in an animal model the utility of Cymerus MSCs as a treatment for ARDS. Cynata says the potential of MSCs in treating the consequences of COVID-19 is underpinned by a study published March 13 in Aging and Disease, concluding that the intravenous transplantation of MSCs was “safe and effective for treatment” in seven enrolled patients with COVID-19 pneumonia in Beijing. Pulmonary function and symptoms of all seven patients significantly improved in two days after MSC transplantation, while two patients with common pneumonia and one severe pneumonia patient recovered and were discharged 10 days after treatment.
 
44. Emergent BioSolutions
 
Candidates: COVID-HIG and COVID-EIG 
Types: Human polyclonal hyperimmune with antibodies to SARS-CoV-2 (COVID-HIG) for severe hospitalized patients and protection for at-risk individuals; Equine-derived polyclonal hyperimmune with antibodies to SARS-CoV-2 (COVID-EIG) for severe hospitalized patients
 
Status: Emergent Biosolutions said March 11 it began development of COVID-HIG and COVID-EIG using its hyperimmune platforms. Hyperimmunes are polyclonal antibody therapeutics derived from plasma that leverage the immune response in humans or animals and can provide immediate protection from infection. Emergent said it has initiated plasma collection efforts for both human and equine platforms, with a goal of manufacturing clinical material within the next four to five months in anticipation of beginning a clinical study as early as the third quarter.
 
45. Ennaid Therapeutics
 
Candidate: ENU200 
Type: Repurposed, patent-pending, oral antiviral drug previously approved by FDA
 
Status: Ennaid said April 2 it is advancing development of ENU200 to treat the up to 80% of asymptomatic, mild to moderate cases of COVID-19 viral infections. Ennaid said in-silico modeling conducted by the company has shown that ENU200 delivers specific antiviral activity against two SARS-CoV-2 proteins, S glycoprotein and Mpro. Ennaid reasons that the simultaneous blockage may result in enhanced antiviral activity that could successfully and broadly treat COVID-19 and other coronaviruses. Ennaid said it is in talks with the FDA and other regulatory agencies worldwide on its planned Phase III in-home, self-dosing clinical trial, which would assess ENU200 in patients with asymptomatic, mild to moderate coronavirus infections.
 
 
46. eTheRNA, EpiVax, Nexelis, REPROCELL, and CEV
 

Candidate: mRNA vaccine against SARS-CoV-2 
Type: Intranasal vaccine integrating eTheRNA’s Trimix technology, an mRNA-based vaccine adjuvant that stimulates dendritic cells into activating a strong CD4 and CD8 T cell response; a combination of T cell epitopes from the virus on a single mRNA construct, using an in-silico epitope prediction and design approach from EpiVax to identify the target; and an intranasal vaccine delivery platform using a nasal atomizer and a proprietary formulation that delivers the mRNA to the nasal mucosa and optimizes expression.eTheRNA said a formulation candidate is being repurposed for clinical use in collaboration with REPROCELL.
 
Status: eTheRNA said March 24 that it has started preclinical development of an mRNA vaccine against SARS-CoV-2 that is intended primarily for high-risk populations such as healthcare workers and families of confirmed cases. It is also designed to be protective against future variations of the virus by targeting conserved epitopes from the whole CoV-2 genome. eTheRNA said it has formed a consortium with EpiVax, Nexelis, REPROCELL and CEV to develop the vaccine and help accelerate progress towards clinical trials; patient enrolment is expected in early 2021. The consortium’s approach selects conserved epitopes from the whole viral genome to create a vaccine that mounts a strong T cell-based response against these epitopes, which the partners reason offers a better chance to overcome viral variability.
 
47. ExpreS2ion Biotechnologies, AdaptVac, and partners
 

Candidate: Vaccine against COVID-19 
Type: Vaccine applying ExpreS2ion’s Drosophila S2 insect cell expression system, and AdaptVac’s capsid virus-like particle (cVLP) technology.
 
Status: ExpreS2ion said March 6 it is part of a consortium of vaccine developers and institutions that have been awarded an E2.7 million ($2.9 million) grant through the European Union’s Horizon 2020 funding program to support development of a COVID-19 vaccine candidate, including conducting a Phase I/IIa clinical trial. Joining ExpreS2ion as members of the consortium are AdaptVac, Leiden University Medical Center, Institute for Tropical Medicine (ITM) at University of Tübingen, University of Copenhagen, and Wageningen University. The consortium aims to launch clinical investigations within 12 months, according to ExpreS2ion. The Danish developer of vaccines and diagnostics first announced its plan to develop a COVID-19 vaccine in February, saying it use Drosophila S2 to produce 2019-nCoV viral antigens in the company’s clinically validated cell lines, as well as in its HighMan-S2™ immunogenicity-enhancing cell line. The company said its goal was to produce the vaccine antigens and test these in mice to demonstrate immunogenicity, and through collaborations demonstrate efficacy in in vitro or animal models as they become available.
 
48. Fudan University, Shanghai JiaoTong University, and RNACure Biopharma
 

Candidate: Vaccine against COVID-19 
Type: mRNA vaccine employing two strategies: researchers have placed the most emphasis on formulating mRNAs that can instruct the host to produce virus-like particles (VLPs) with morphological and structural features similar to those of native COVID-19 viruses and activate immune responses. The other approach uses mRNA to express the receptor-binding domain of the spike protein of COVID-19 to induce neutralizing-antibodies in the human body.
 
Status: Fudan University on March 7 announced the partnership, led by Fudan’s Prof. Lin Jinzhong, PhD. Researchers have formulated an mRNA cocktail containing three genes of COVID-19, which produce VLPs when used to co-transfect human cells “the first time the world has witnessed modified mRNAs that can synthesize VLPs,” according to Fudan.
 
49. Generex Biotechnology (NuGenerex Immuno-Oncology) and EpiVax
 
Candidate: Ii-Key peptide vaccine 
Type: Vaccine based on Generex’s Ii-Key immune system modulation technology platform
 
Status: Generex on March 19 said it has been in talks with the Biomedical Advanced Research and Development Authority (BARDA) and the U.S. Departments of Veterans Affairs and Health and Human Services, as well as with authorities in Canada, Greece, Iceland, Indonesia, Italy, Philippines, Romania, Saudi Arabia, and the U.K. for licensing Ii-Key-SARS-2 peptide vaccines as well as new, patented immunotherapy technology allowing those countries co-ownership of the Intellectual Property in their territories. A week earlier, Generex said it would spin out its NuGenerex Immuno-Oncology (NGIO) subsidiary into a separate public company focused on advancing Ii-Key peptide vaccines into development to treat and prevent COVID-19 and other infectious diseases, as well as cancer, with partners in the U.S. and China. Generex filed a Form 10 Registration Statement for NGIO, to be effective in 60 days. According to the company, NGIO’s Ii-Key antigenic peptides have been shown to supercharge the immune system up to 100 times more than peptides alone.
 
50. GeoVax Labs and BravoVax
 

Candidates: Vaccine for prevention/control of COVID-19 
Type: Vaccine based on GeoVax’s GV-MVA-VLPTM vaccine platform
 
Status: GeoVax said March 18 that the companies completed three vaccine candidates after making rapid progress with design, construction and in vitro characterizations. The companies will narrow down the candidates to the one that shows the best safety, immunogenicity and protective efficacy in upcoming animal studies. GeoVax and BravoVax aim to advance a vaccine candidate to human clinical trials before year’s end, GeoVax President and CEO David Dodd stated. GeoVax said it was in talks with, and submitted applications to, the Biomedical Advanced Research and Development Authority (BARDA) and other U.S. and international funding agencies. The company noted that BARDA has $3.5 billion available toward supporting the manufacturing, production and purchase of vaccines, therapeutics, and diagnostics under the $2 trillion Coronavirus Aid, Relief, and Economic Security Act (CARES ACT), signed into law by President Donald Trump on March 27.
GeoVax disclosed its intent to collaborate with BravoVax, a vaccine developer in Wuhan, China, to develop a COVID-19 vaccine in January.
 
51. GlaxoSmithKline (GSK), CEPI, and University of Queensland
 
Candidate: Vaccine to prevent SARS-CoV-2 
Type: Vaccine based on UQ “molecular clamp” technology, using GSK’s vaccine adjuvant platform
 
Status: GSK and the Coalition for Epidemic Preparedness Innovations (CEPI) said February 3 they would partner to develop a vaccine for SARS-CoV-2. CEPI agreed to coordinate engagements between GSK and CEPI-funded entities interested in combining their vaccine platforms with GSK’s adjuvant technology against SARS-CoV-2 starting with the University of Queensland, which is partnering with CEPI to develop its “molecular clamp” vaccine platform, in which a recombinant subunit vaccine of SARS-CoV-2 S protein is locked in prefusion conformation by polypeptide moiety. Last month, GSK identified University of Queensland as one of five partner companies and research groups worldwide with which GSK is collaborating on COVID-19 vaccines using GSK’s vaccine adjuvant technology. GSK said it expected data to be reported from the collaborations over the next three months.
 
52. Greffex
 
Candidate: Vaccine to protect against COVID-19 
Type: Fully-deleted, helper virus-independent adenovirus-based vector vaccine based on the company’s GreVac™ Plug-And-Play Technology
 
Status: Greffex on March 11 said it was prepared to advance its vaccine candidate into animal testing, with a commitment to distributing its vaccine for free to other countries upon approval. Two days earlier, Greffex CEO John Price told Fox News Channel’s “America’s Newsroom” broadcast that his company aimed to get its vaccine approved and available to patients by year’s end.Greffex says it has developed the world’s first universal vaccine platform that delivers unprecedented time-to-market, cost efficiency, efficacy, and safety by using proprietary clean viral vectors. The company has a pipeline of 12 vaccines that includes candidates for influenza, MERS-CoV, anthrax, Ebola, tetravalent Dengue, and Zika.
 
53. Grifols, BARDA, and FDA
 
Candidate: Anti-SARS-CoV-2 hyperimmune globulin therapy
Type: Plasma from convalescent COVID-19 patients, processed into a hyperimmune globulin
 
Status: Grifols on March 25 said it entered into a formal collaboration with the Biomedical Advanced Research Development Authority (BARDA), the FDA and other federal public health agencies to support preclinical and clinical studies to determine if anti-SARS-CoV-2 hyperimmune globulin therapy can successfully be used to treat COVID-19 disease. Grifols said it will volunteer its expertise and resources by using its network of FDA-approved plasma donor centers; testing and qualifying donors in conjunction with other health agencies; processing plasma into hyperimmune globulin at a Clayton, NC, facility; and support studies to determine whether the treatment can be a viable treatment for COVID-19 and future emerging infectious diseases.
 
54. Hoth Therapeutics and Voltron Therapeutics (HaloVax)
 
Candidate: Vaccines to prevent, intercept or treat COVID-19 
Type: Vaccines to be based upon VaxCelerate, a self-assembling vaccine platform exclusively licensed by Voltron from the Vaccine and Immunotherapy Center at Massachusetts General Hospital (MGH).
 
Status: Hoth and Voltron subsidiary HaloVax said April 2 they entered into a Sponsored Research Agreement with the Vaccine and Immunotherapy Center (VIC) of Massachusetts General Hospital to co-develop a new vaccine designed to protect patients at risk of COVID-19 infection, applying the Self-Assembling Vaccine (SAV) platform developed by the VIC and licensed exclusively to Voltron. The vaccine is expected to enter animal testing within the next 30 days, the companies said. Hoth and Voltron said they formed HaloVax, a joint venture, to begin preclinical studies for COVID-19 vaccine candidates with support from MGH. VaxCelerate which consists of a fixed immune adjuvant and a variable immune target and offers several potential advantages over other compounds in combination therapy. In infectious applications, it allows rapid development against viruses and other pathogens. The vaccine focuses on both DNA and internal/external mutated proteins providing the immune system with more potential targets to attack.
 
55. iBio, TAMUS, and Beijing CC-Pharming
 
Candidate: IBIO-200, vaccine for preventing SARS-CoV-2 infection ●
Type: Plant-derived vaccine SARS-CoV-2 Virus-Like Particle (VLP)-based constructs manufactured using iBio’s FastPharming System™, designed to produce the nanoparticles in, and purify them from, plants.
 
Status: iBio said April 9 the Infectious Disease Research Institute (IDRI) will support preclinical development and provide clinical trial oversight for iBio’s IBIO-200 vaccine development program for COVID-19. iBio and IDRI also agreed to establish a separate, additional agreement within the next 60 days if the company opts to include one of IDRI’s novel adjuvants in the program.In March, iBio said it advanced iBIO-200 to immunization studies at Texas A&M University System (TAMUS) laboratories, under a Master Joint Development Agreement established between iBio and TAMUS in 2016. The partners seek to optimize a combination of VLP and adjuvant to advance to human clinical trials. iBio has developed two types of VLPs, glycosylated and non-glycosylated, as options for development.
 
56. ImmunoPrecise Antibodies (IPA) and EVQLV
 
Candidates: Coronavirus-neutralizing antibodies 
Type: PolyTope mAb Therapy™, a defined antibody combination designed to target multiple epitopes and mechanisms of viral evasion, and enabled by IPA’s discovery platforms (including B Cell Select™ and DeepDisplay™) and ImmunoPrecise subsidiary Talem Therapeutics’ access to the transgenic animal platform OmniAb® for direct generation of human antibodies.
 
Status: IPA said March 30 that its collaboration partner EVQLV submitted its first panel of candidate therapeutic antibody sequences, comprised of DNA sequences encoding for potentially therapeutic antibodies against SARS-CoV-2. The sequences were generated in less than one week using computational antibody design, which combines mathematics, statistics, and computer science to identify high-affinity antibodies. IPA said it will review the antibody candidates, then select approximately 1,200 ideal candidates characterized and screened by EVQLV’s artificial intelligence, and validate the antibody candidates in vitro at IPA’s lab facilities. The companies said they will continue to work on additional panels of computationally generated sequence candidates against SARS-CoV-2. Earlier last month, IPA announced its PolyTope mAb Therapy approach to developing a COVID-19 treatment. The company also spoke of potentially developing a vaccine for COVID-19, but has not announced any such effort since then.
 
57. Imperial College London
 

Candidate: Vaccine to protect against COVID-19 
Type: Self-amplifying RNA vaccine, designed to inject new genetic code into a muscle, and instructing that muscle it to make a protein found on the surface of coronavirus, triggering a protective immune response.
 
Status: Imperial said March 20 that Prof. Robin Shattock, PhD, and colleagues developed a vaccine candidate within 14 days of getting the sequence from China. The researchers have been testing the vaccine on animals since February 10, and plan to move to clinical trials in the summer, Imperial said. “If all goes well it could be available sometime next year,” Shattock  told Thailand Medical News.
 
58. InflaRx and Beijing Defengrei Biotechnology (BDB)
 
Candidate: IFX-1 
Type: Potentially first-in-class monoclonal anti-human complement factor C5a antibody in development for COVID-19 as well as inflammatory indications that include hidradenitis suppurativa, ANCA-associated vasculitis and Pyoderma Gangraenosum.
 
Status: InflaRx on March 31 said it had enrolled the first patient into a randomized clinical trial in the Netherlands that is investigating the safety and efficacy of IFX-1 in patients with severe COVID-19-induced pneumonia. The patient is being treated at Amsterdam University Medical Centers, with additional centers in Germany and potentially other European countries planned. InflaRx said it had received from its Chinese licensee BDB initial positive human data from the first two patients treated in a Chinese clinical trial with BDB-001, an anti-C5a antibody produced in China by BDB from the IFX-1 cell line. That data is part of a larger study on the role of complement activation in COVID-19, made public through a preprint and not yet independently verified by InflaRx.
 
59. Innovation Pharmaceuticals
 

Candidate: Brilacidin 
Types: Vaccine and antiviral small molecule drug formulations against COVID-19 containing Defensin mimetic. The drug is in Phase II development in oral muscositis in head and neck cancer
 
Status: Innovation on April 1 announced a study published in the International Journal of Infectious Diseases that supported small molecule Brilacidin’s direct inhibition of SARS-CoV-2, based on testing on Vero cells at an undisclosed U.S. Regional Biocontainment Laboratory (RBL). At 16 hours post-infection, researchers observed a dose-dependent reduction in the SARS-CoV-2 infectious viral titers from Brilacidin treated cells as compared to the vehicle-alone control (Dimethyl sulfoxide or DMSO). According to Innovation, the antiviral activity showed Brilacidin’s 3-in-1 therapeutic potential antiviral, anti-inflammatory, antimicrobial against COVID-19 and associated complications. In other indications, the company said, Brilacidin has shown the ability to inhibit interleukin-6 (IL-6) and other pro-inflammatory cytokines and chemokines identified as key drivers in worsening prognoses of COVID-19 patients.
 
60. Institut Pasteur, Themis, and University of Pittsburgh
 

Candidate: Vaccine to treat COVID-19 
Type: Measles vector vaccine engineered to express SARS-CoV-2 proteins on its surface 
 
Status: The Institut Pasteur leads a consortium that includes Themis and the University of Pittsburgh’s Center for Vaccine Research (CVR). The consortium has been awarded an initial $4.9 million by CEPI, the Coalition for Epidemic Preparedness Innovations. As a first step, CEPI funding will support the preclinical testing, initial manufacture of vaccine materials, and preparatory work for Phase I studies, CEPI said on March 19. Pitt said CVR researchers expect to have a vaccine candidate ready for animal testing in Paris and Pittsburgh in April, to be complemented by development of an aerosol model of COVID-19 at CVR. By the end of the year, Pitt added, a total of 60 to 80 human volunteers in two sites in Europe will have been dosed with the vaccine. At the same time, Themis plans to generate a stockpile of the vaccine candidate in anticipation of a Phase II trial set to start early next year.
 
61. Izana Bioscience
 

Candidate: Namilumab (IZN-101) 
Type: Fully human monoclonal antibody therapy targeting granulocyte-macrophage colony stimulating factor (GM-CSF), in development for rheumatoid arthritis and ankylosing spondylitis
 
Status: Izana said April 6 it initiated a two-center compassionate use study of namilumab to treat patients with rapidly worsening COVID-19 before ICU admission and prior to ventilation. The study is being conducted in cooperation with the Humanitas research group, led by Prof. Carlo Selmi, MD, PhD, head of the Rheumatology and Clinical Immunology Unit at Humanitas Research Hospital and Associate Professor of Internal Medicine at Humanitas University.
Separately, Ergomed said it is providing support for namilumab’s clinical development program. The study will take place in Bergamo and Milan, Italy. According to Izana, namilumab is a Phase III-ready treatment being studied under emergency access.
 
62. Janssen Pharmaceutical Cos. (J&J) and BARDA
 

Candidate: Antiviral treatment for COVID-19 
Type: Classified
 
Status: J&J said March 30 that the company and the Biomedical Advanced Research and Development Authority (BARDA) will both provide unspecified additional funding intended to enable expansion of ongoing work to identify potential antiviral treatments against COVID-19.
 
63. Johns Hopkins
 

Candidates: Antibodies targeting SARS-CoV-2 
Types: Antibodies from the blood plasma or serum of people who have recovered from COVID-19 infection.
 
Status: Johns Hopkins researchers Arturo Casadevall, MD, PhD, and Liise-anne Pirofski, MD, published a paper March 13 in The Journal of Clinical Investigation detailing their treatment approach to COVID-19: “Human convalescent serum is an option for prevention and treatment of COVID-19 disease that could be rapidly available when there are sufficient numbers of people who have recovered and can donate immunoglobulin-containing serum.” The Johns Hopkins Research Team has put initial funding toward Casadevall’s project, to purchase equipment and set up an operation in Baltimore. Casadevall and his team are working now with state and federal officials to try to secure more resources, according to Johns Hopkins.
 
64. Kleo Pharmaceuticals and Green Cross LabCell (GCLC)–65
 
Candidate: COVID-19-targeting allogeneic Natural Killer (NK) cell combination therapy
Type: Combination of Kleo’s first non-oncology application of its Antibody Recruiting Molecule (ARM™) and GCLC’s NK cells
 
Status: Kleo on March 31 said it had entered a research collaboration with GCLC to rapidly develop a COVID-19-targeting allogeneic NK cell combination therapy, combining Kleo’s next-gen fully synthetic bispecific compounds designed to emulate or enhance the activity of biologics with GCLC’s allogeneic, or “off-the-shelf” NK cell therapies. Earlier this year, Kleo received approval from the FDA to proceed with an ARM/NK clinical trial assessing the combination cell therapy in newly diagnosed, multiple myeloma patients. The ARM in that trial targets the cell surface protein CD38 and uses autologous cytokine induced memory like (CIML) NK cells to kill tumor cells. In the context of COVID-19, the partners said, ARM acts as a neutralizing antibody to block direct binding on the virus to human cells, then enlists immune effector cells to eliminate viral particles and/or infected cells. The ARM can produce a long-term vaccination effect by activating and expanding immune memory cells.
 
65. La Jolla Pharmaceutical
 

Candidate: GIAPREZA™ (angiotensin II)
Type: Vasoconstrictor approved by the FDA in 2017 and indicated to increase blood pressure in adults with septic or other distributive shock. The drug was approved by the European Commission in August 2019 for refractory hypotension in adults with septic or other distributive shock, but is not yet commercially available in Europe.GIAPREZA is designed to mimic the body’s endogenous angiotensin II peptide, which is central to the renin-angiotensin-aldosterone system, which in turn regulates blood pressure.
 
Status: La Jolla has disclosed five instances where it agreed to providing GIAPREZA for emergency use in patients with septic shock due to COVID-19: University Hospital Münster in Germany (April 7), Royal Surrey County Hospital in Guildford, Surrey, UK (April 6), University Hospital Frankfurt in Germany (announced April 3), Guy’s and St Thomas’ NHS Foundation Trust in London (April 2), and Italy (March 13).
 
66. Ligandal
 
Candidate: Vaccine 
Type: Vaccine providing a fully synthetic scaffold for mimicking T-cell receptor and antibody binding epitopes, which can be rapidly custom-tailored to new mutant forms of a virus
 
Status: Ligandal presented its approach for rapid vaccine prototyping on its website, stating that its synthetic scaffold can additionally serve as a targeting ligand mimicking viral entry to target diseased cells and tissues with therapeutic agents. These “mini viral scaffolds can be synthesized in hours, and rapidly scaled to 100kg+ scale to meet global needs, Ligandal stated.“Our next steps will relate to synthesis and characterization of these scaffolds, as well as additional techniques for mapping known and predicted immune-epitopes onto variable domains of the scaffolds,” the company added. Unlike recombinant and other approaches, Ligandal said, its vaccine approach needs to use fewer than 70 amino acids out of an approximately 1,200 amino acid spike protein in order to generate a predicted trifunctional scaffold for ACE2 binding and TCR/antibody recognition.
 
67. Medicago
 
Candidates: Vaccine and antibody candidates 
Types: Virus-Like Particle (VLP) vaccine and antibodies against SARS-CoV-2 developed through the company’s plant-based technology platform in collaboration with Laval University’s Infectious Disease Research Centre headed by Gary Kobinger, PhD, whose lab developed a successful Ebola vaccine. That research is being funded in part by the Canadian Institutes for Health Research.
 
Status: The Government of Canada announced March 23 that Medicago was among companies set to receive an unspecified amount of funding from the $192 million available for new, large-scale projects under the new Strategic Innovation Fund COVID-19 funding stream—part of the government’s $1 billion COVID-19 Response Fund. Two days earlier, the Government of Quebec awarded C$7 million (about $5 million) toward the company’s vaccine development effort. Medicago said March 12 it successfully produced a coronavirus VLP 20 days after obtaining the SARS-CoV-2 gene—the first step in developing a vaccine for COVID-19. The vaccine will undergo preclinical testing for safety and efficacy, followed by human trials anticipated to start by summer (July/August) 2020.
 
68. MediciNova
 
Candidate: MN-166 (ibudilast)
Type: First-in-class, orally bioavailable, small molecule macrophage migration inhibitory factor (MIF) inhibitor and phosphodiesterase (PDE) -4 and -10 inhibitor
 
Status: MediciNova said April 8 it will initiate a clinical trial of MN-166 for acute respiratory distress syndrome (ARDS) caused by COVID-19. The study will be conducted by Yale’s Advanced Therapies Group. The lead principal investigator for the trial is Geoffrey Chupp, MD, professor of medicine (Pulmonology), director of the Yale Center for Asthma and Airway Disease and director of the Pulmonary Function Laboratory at Yale-New Haven Hospital. Earlier human studies have shown significant reductions of serum MIF level after treatment with MN-166. It also attenuates activated glial cells, which play a major role in certain neurological conditions, MediciNova said. The company reasons that MN-166 could reduce the mortality of COVID-19 by limiting the hyperinflammation and ARDS associated with severe cases.
 
69. Monash Biomedicine Discovery Institute (BDI) and Peter Doherty Institute of Infection and Immunity
 

Candidate: Ivermectin (marketed by Merck & Co. under the names Stromectol® and Mectizan®, but also available as a generic drug) 
Type: Anti-parasitic drug approved by the FDA for Strongyloidiasis of the intestinal tract, and onchocerciasis (river blindness). Since 1987, Merck has committed to donating Mectizan—as much as needed, for as long as needed—with the goal of eliminating river blindness through the public-private partnership Mectizan Donation Program. The program was extended in 1998 to include lymphatic filariasis (LF).
 
Status: BDI and the Doherty Institute on April 3 published a preprint study in Antiviral Research  showing that Ivermectin essentially stopped the SARS-CoV-2 virus growing in cell culture within 48 hours, and reduced viral RNA significantly at 24 hours. The in vitro study will be followed up with human clinical trials, the institutions said.
 
70. NanoVirocides
 

Candidate: Antiviral therapy based on company’s novel nanomedicines platform. 
Type: Broad-spectrum virus-binding ligand: “It is like a ‘Venus-Fly-Trap’ for the virus,” says Anil R. Diwan, PhD, president and executive chairman.
 
Status: NanoVirocides on March 16 said it completed the synthesis of “a number of” nanoviricide drug candidates for cell culture testing a few weeks after identification of virus-binding ligands, a result of the company tapping into its inventory of novel custom chemicals, including a polymer backbone that was previously manufactured in multi-kilogram quantities. NanoVirocides confirmed in January that it was developing a COVID-19 treatment, stating that it “already found some lead candidate ligands in its chemical library” that can bind to the SARS-CoV spike protein just as it binds to cognate receptor angiotensin converting enzyme type 2 (ACE2). The company’s technology relies on copying the human cell-surface receptor to which the virus binds, and making ligands that chemically attach to a nanomicelle, to create a nanoviricide®. When a virus comes in contact with the nanoviricide, the nanomicelle polymer is designed to fuse with the virus lipid envelope. The company said it has started preparing for testing of potential candidates in cell cultures against “low-threat” coronaviruses, including ones that use the ACE2 receptor, in its own BSL-2 virology laboratory at its Shelton, CT, campus. NanoViricides added that it is working on developing collaborations to advance its COVID-19 program should an effective drug candidate be identified. If initial work suggests a potential for developing a successful antiviral,  NanoVirocides said in a Form 10-Q quarterly report filed February 24, it will pursue a license allowing use for coronaviruses from the license-holder of its technology TheraCour, whose 90% owner is NanoViroCides president and chairman Anil Diwan, PhD. NanoVirocides also said it acquired and expanded two low-threat circulating coronaviruses in its BSL-certified virology lab, and has already expanded them to enable testing of drug candidates. One coronavirus, NL63, uses the same ACE2 receptor on human cells as SARS-CoV-2, although it does not cause a similarly severe disease in humans. If the test candidates show effectiveness in the cell culture studies against coronaviruses, the company reasons, that would provide a strong rationale for expecting they would be effective against SARS-CoV-2. NanoVirocides added that it also successfully developed antiviral drug testing assays based on cell culture infection of low-threat coronaviruses in the BSL2 lab a feat accomplished in a few weeks due to the expertise of senior virologist Brian Friedrich, PhD.
 
71. Neurimmune and Ethris
 
Candidate: Immunotherapy designed to produce inhaled mRNA-based antibodies directly in the lungs of COVID-19 patients 
Type: mRNA-encoded, neutralizing anti-SARS-CoV-2 antibodies administered by inhalation
 
Status: The companies on March 31 announced their COVID-19 collaboration, designed to combine Neurimmune’s expertise in developing human antibodies via its RTM™ Technology platform, based on high-throughput immunoglobulin sequence analyses from COVID-19 patients who have recovered from the disease with Ethris’ pulmonary SNIM®RNA therapeutics platform.The first product candidate is expected to begin clinical testing in the fourth quarter, pending regulatory approval, Neurimmune and Ethris said. The companies have agreed to jointly conduct R&D activities while sharing costs and revenues resulting from the collaboration and intend to begin manufacturing of the drug product for clinical trials this summer.
 
72. Novavax and Emergent Biosolutions
 

Candidate: NVX-CoV2373 
Type: Stable, prefusion protein made using Novavax’ proprietary nanoparticle technology, and incorporating its proprietary saponin-based Matrix-M™ adjuvant.
 
Status: Novavax on April 8 said it identified a COVID-19 vaccine candidate, and will initiate a first-in-human clinical trial in mid-May. The Phase I trial is a placebo-controlled observer blinded study of ~130 healthy adults and includes assessment of dosage amount and number of vaccinations. The trial is expected to begin in mid-May with preliminary immunogenicity and safety results in July.The company said NVX-CoV2373 was shown to be highly immunogenic in animal models measuring spike protein-specific antibodies, antibodies that block the binding of the spike protein to the receptor, and wild-type virus neutralizing antibodies. High levels of spike protein-specific antibodies with ACE-2 human receptor binding domain blocking activity and SARS-CoV-2 wild-type virus neutralizing antibodies were also seen after a single immunization.
 
73. Novoteris and Mallinckrodt
 

Candidate: Thiolanox®, a high-dose inhaled nitric oxide therapy for the treatment of patients infected with SARS-CoV-2
Type: Pharmaceutical nitric oxide gaseous formulation supplied via Mallinckrodt’s high-pressure cylinders at 5,000 ppm (0.5% v/v) nitric oxide gas for inhalation canisters.
 
Status: Novoteris and Mallinckrodt said April 1 that the Therapeutic Products Directorate of Health Canada cleared the companies’ joint pilot clinical trial to investigate Thiolanox in patients infected with SARS-CoV-2 at Vancouver Coastal Health Authority facilities.  The study is designed to assess the safety and effectiveness of Thiolanox in treating COVID-19 and its associated lung complications. The companies said they expected to begin recruiting patients “in the coming days.”
 
74. OncoSec
 
Candidate: CORVax12 
Type: Prophylactic vaccine against COVID-19, consisting of OncoSec’s TAVO™ (interleukin-12 or “IL-12” plasmid), in combination with a DNA-encodable version of the SARS-CoV-2 spike or “S” glycoprotein
 
Status: OncoSec said April 6 that Providence Cancer Institute, part of Providence St. Joseph Health, submitted to the FDA an IND application and have designed a protocol for a Phase I clinical trial evaluating CORVax12 in healthy adult volunteers, using OncoSec’s next-generation, investigational APOLLO generator technology for the first time clinically.CORVax12 combines OncoSec’s IL-12 plasmid TAVO with an immunogenic component of the SARS-CoV-2 virus recently developed by researchers at NIH’s National Institute of Allergy and Infectious Diseases (NIAID) and licensed non-exclusively to OncoSec.
 
75. Persephone Biosciences
 
Candidate: Immune-boosting microbiome therapeutic to help prevent and fight SARS-CoV-2
Type: Treatment designed to be taken at the onset of symptoms or with a vaccine or antiviral drug to mount an effective immune response with long-lasting immunity and boost the immune system of those exposed to the virus. The treatment is being developed as a general enhancer of the immune system “may be effective against mutations, seasonal flu and future pandemics,” Persephone says.
 
Status: Persephone on April 2 announced the development of the immune-boosting microbiome therapeutic, and a stool-based diagnostic, and is seeking partners for preclinical development or clinical trials. The company’s proprietary Decode.Design.Cure® technology platform is designed to collect and analyze gut microbiome samples from thousands of patients through its nationwide Poop For The Cure® campaign, using artificial intelligence and next-generation genome sequencing technologies.
 
76. PharmaMar
 
Candidate: Aplidin® (plitidepsin)
Type: Anticancer agent of marine origin, originally obtained from the ascidian Aplidium albicans. It specifically binds to the eEF1A2 and targets the non-canonical role of this protein, resulting in tumor cell death via apoptosis (programmed death).
 
Status: PharmaMar on April 2 said it it submitted its protocol for the Phase II APLICOV clinical trial of Aplidin to the Spanish Medicines and Healthcare Products Agency (AEMPS). The planned 160-patient trial would be a multicenter, randomized study in which two different doses of plitidepsin will be evaluated in hospitalized patients with COVID-19 pneumonia, to assess whether plitidepsin, administered intravenously for 5 days, reduces the proportion of patients who progress to Acute Respiratory Distress Syndrome (ARDS).In March, PharmaMar announced the results of in vitro studies of plitidepsin in human coronavirus HCoV-229E, with a mechanism of multiplication and propagation that is very similar to that of SARS-CoV-2. The studies were carried out at the National Biotechnology Centre of the Spanish National Research Council (CSIC; Centro Nacional de Biotecnología). The studies confirmed that the therapeutic target of Aplidin, EF1A, is key to the multiplication and spread of the virus.
 
77. Pluristem Therapeutics
 
Candidate: PLX Cells for COVID-19
Type: “Off the shelf,” placenta-based allogeneic mesenchymal-like cells with immunomodulatory properties that induce the immune system’s natural regulatory T cells and M2 macrophages. Pluristem reasons PLX cells may prevent or reverse dangerous overactivation of the immune system by reducing the incidence and\or severity of COVID-19 pneumonia and pneumonitis.
 
Status: Pluristem on April 7 announced positive preliminary data from its compassionate use program treating seven patients suffering from acute respiratory failure and inflammatory complications associated with COVID-19 with PLX cells at three medical centers in Israel. Four of six patients who completed a one-week follow up showed improvement in respiratory parameters, of which three are in advanced stages of weaning from ventilators. One such patient showed no change, and one showed deterioration. The company plans to apply to initiate a multinational regulated clinical trial program for the potential use of PLX cells in the treatment of patients suffering from complications associated with COVID-19.
 
78. RedHill Biopharma
 
Candidates: Opaganib (Yeliva®, ABC294640) and RHB-107, in combination and individually
Types: Opaganib is a first-in-class, orally-administered, sphingosine kinase-2 (SK2) selective inhibitor with anticancer and anti-inflammatory activities, targeting multiple oncology, inflammatory and gastrointestinal indications. RHB-107 is a first-in-class, orally-administered inhibitor of S1 family of trypsin-like serine proteases with potential for use in multiple oncology, gastrointestinal and inflammatory indications.
 
Status: RedHill said April 13 the first two patients were treated with opaganib at “a leading hospital in Israel” under the company’s compassionate use program according to Israeli Ministry of Health guidelines, in addition to standard-of-care, which included hydroxychloroquine (HCQ) as background therapy. Preliminary findings from both patients, who suffered from moderate to severe acute respiratory symptoms related to SARS-CoV-2 infection, showed clinical improvement within days following the start of treatment with opaganib, RedHill said.To date, both patients showed decreased supplemental oxygen requirements and decreased C-reactive protein (CRP) levels, and an increase in lymphocyte levels. One of the patients was released from the ICU within days of treatment initiation with opaganib.
RedHill said April 6 the first patient with a confirmed COVID-19 diagnosis had been dosed with opaganib at “a leading hospital in Israel.” Opaganib was administered under a compassionate use program in accordance with the Israeli Ministry of Health guidelines, with additional patients expected to be treated in the coming days. Approximately 160 patients at three Italian hospitals will be treated with opaganib under an expanded access program (EAP) allowing immediate compassionate use of the drug, RedHill also said April 6.
 
79. Ridgeback Biotherapeutics and Drug Innovations at Emory (DRIVE)
 

Candidate: EIDD-2801
Type: Oral broad-spectrum NHC-prodrug (Beta-D-N4 hydroxycytidine-5’-isopropyl ester), a highly potent ribonucleoside analog designed to inhibit replication of multiple RNA viruses including SARS-CoV2.
 
Status: Ridgeback and DRIVE, a not-for-profit biotechnology company wholly owned by Emory University, said April 7 the FDA approved DRIVE’s IND application to begin human clinical trials of EIDD-2801.Ridgeback and DRIVE announced their collaboration to rapidly advance EIDD-2801 into human trials in March. Ridgeback agreed to advance EIDD-2801 through clinical development and ensure that it is available during the current pandemic.
Under the collaboration, Ridgeback has exclusively licensed EIDD-2801, which has shown broad spectrum activity against influenza, SARS, MERS, chikungunya, and equine encephalitis. On March 20, Ralph Baric, PhD, at The University of North Carolina at Chapel Hill, and colleagues from there, Emery, Vanderbilt University Medical Center, and the U.S. Centers for Disease Control and Prevention posted a preprint of a study reporting that both prophylactic and therapeutic administration of EIDD-2801 in mice infected with SARS-CoV or MERS-CoV improved pulmonary function, and reduced virus titer and body weight loss.“The potency of NHC/EIDD-2801 against multiple coronaviruses, its therapeutic efficacy, and oral bioavailability in vivo, all highlight its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic coronaviruses,” Baric and colleagues concluded.
 
80. Roivant Sciences
 
Candidate: Gimsilumab 
Type: Fully human monoclonal antibody targeting granulocyte-macrophage colony stimulating factor (GM-CSF).
 
Status: On March 27, Roivant’s contract research organization Altasciences said it completed a Phase I trial (NCT04205851) of gimsilumab in patients with or at risk of developing acute respiratory distress syndrome (ARDS). Nine days earlier on March 18, Roivant said it had engaged with regulators in the U.S., Europe, and Asia to rapidly advance clinical development of gimsilumab to treat ARDS associated with SARS-CoV-2. Roivant cited research from Chinese patients showing that GM-CSF is a pro-inflammatory cytokine found to be up-regulated in the serum of COVID-19 patients. According to Roivant, GM-CSF boosts the expression of pro-inflammatory cytokines such as TNF, IL-6, and IL-23, in addition to promoting the differentiation of Th1/17 cells and the polarization of macrophages to a M1-like phenotype. Gimsilumab has been tested in several non-clinical studies and two clinical studies, including the four-week, 36-patient Phase I study, which evaluated a subcutaneous formulation in healthy volunteers. Roivant said it will prioritize trials of gimsilumab in patients with COVID-19 instead of a Phase II trial in a separate disease area which had been previously planned.
 
81. Sorrento Therapeutics
 

Candidate: STI-4398 (COVIDTRAP™), a vaccine to protect against SARS-CoV-2 infection 
Type: ACE2 (angiotensin-converting enzyme 2)-Fc fusion protein (COVIDTRAP) designed to bind to the S1 domain of the spike protein of SARS-CoV-2. COVIDTRAP is a soluble recombinant fusion protein trap designed to block the SARS-CoV-2 virus from binding and infecting respiratory epithelial cells, which is expected to effectively interrupt the viral life cycle.
 
Status: Sorrento said March 20 it produced a preclinical batch of the STI-4398 (COVIDTRAP) protein, and anticipates completing enabling studies for an expedited IND filing “in the next few months.”In vitro cell studies for SARS-CoV-2 virus infection and neutralization are expected to be conducted in the next few weeks in collaboration with “world-leading” coronavirus experts, Sorrento said. Sorrento scientists are in parallel working speedily to generate a stable CHO (Chinese Hamster Ovary) manufacturing cell line that would enable high-yield cGMP production of the COVIDTRAP fusion protein. Late last month, Sorrento said it entered into a research testing agreement with The University of Texas Medical Branch at Galveston for preclinical testing of Sorrento’s COVID-19 therapeutic product candidates.
 
82. Sorrento Therapeutics
 
Candidate: STI-6991 to prevent SARS-CoV-2 infection 
Type: I-CellTM COVID-19 “decoy” cellular vaccine made of replication-deficient human erythroleukemia K562 immune-training cells expressing membrane-bound S1 protein of the SARS-CoV-2 virus.
 
Status: Sorrento said March 25 it was developing STI-6991, and was in active discussions with the FDA’s Center for Biologics Evaluation and Research under IND#019724 concerning IND-enabling studies, CMC (chemistry, manufacturing and controls), clinical protocol and end-points for potential accelerated approval. Sorrento said intends to submit a full package for an IND filing that would enable human clinical trials to start “as soon as possible.”Sorrento expects to use a replicating cell line (human erythroleukemia, K562) to incorporate SARS-CoV-2’s spike protein or its S1 domain onto the cellular membrane so that the viral antigen is presented on a decoy cell surface to elicit both T cell and B cell immunities.
 
83. Takeda Pharmaceutical
 
Candidate: TAK-888 
Type: Anti-SARS-CoV-2 polyclonal hyperimmune globulin (H-IG) a plasma derived-therapy designed to treat high-risk individuals with COVID-19.

Status: Takeda said March 4 it began development of TAK-888, part of the H-IG class of treatments that have previously shown effectiveness in treating severe acute viral respiratory infections. Such therapies are designed to concentrate pathogen-specific antibodies from plasma collected from recovered patients or vaccinated donors in the future.Takeda said it had begun talks with health and regulatory agencies and healthcare partners in the U.S., Asia, and Europe to quickly advance its research into TAK-888. Those talks will include how to access plasma from people who have successfully recovered from COVID-19, or who have been vaccinated once a vaccine is developed, since these donors would have developed antibodies to the virus that could potentially prevent illness in COVID-19 patients, or at least mitigate its severity.Takeda said it will initially produce the therapy in a segregated area within its manufacturing facility in Georgia, since the plasma needed for TAK-888 is unlikely to come from current plasma donors.
 
84. Ufovax (Scripps Research)
 
Candidate: Vaccine targeting SARS-CoV-2 
Type: Nanoparticle vaccine based on one component self-assembling protein nanoparticle (1c-SApNP) platform technology invented by Jiang Zhu, PhD.  The vaccine consists of self-assembling virus-like particles made from identical proteins that are synthesized through the insertion of a single plasmid encoding the relevant gene into a CHO or C1 (DYAI) host cell, followed by one-step expression and two subsequent purifications.
The vaccine prototype features SARS-CoV-2 protein spikes protruding from a protein nanoparticle scaffold.
 
Status: Ufovax, a Scripps Research spinout company, said March 23 it successfully extended its vaccine platform technology to a vaccine against SARS-CoV-2. The platform previously delivered promising vaccine candidates to address global health challenges such as HIV, hepatitis C vaccine, Ebola, and respiratory syncytial virus (RSV).
 
85. University Hospitals (UH), ARMS Pharmaceutical, and Case Western Reserve University
 
Candidate: ARMS-1
Type: Oral spray antiviral applied before or during exposure to airborne pathogens.
 
Status: UH said April 2 it will lead the ARMS-I COVID Study, a clinical trial of ARMS Pharmaceutical’s ARMS-1. The trial will study ARMS-1 in UH caregivers, to assess whether the drug helps prevent airborne transmission of coronavirus and reduces the symptoms of healthcare providers who have tested positive for SARS-CoV-2. The randomized placebo-controlled crossover study is expected to begin within two weeks, according to Daniel I. Simon, MD, Chief Clinical & Scientific Officer and President, UH Cleveland Medical Center. ARMS Pharmaceutical has articulated ARMS-1’s potential mechanism of action: A microbe-impermeable barrier is applied at the oropharynx, a gateway to the pathogenesis of viral upper respiratory infections, potentially blocking the ability for pathogens to reach mucosal tissue and begin the infection cycle. The barrier is infused with an antiviral which is believed to be resistant to antigenic drift and viral mutation which has the potential to kill pathogens that come into contact with the barrier, thus intensifying the effect of the barrier action.
 
86. University of Oxford and partners
 

Candidate: ChAdOx1 nCoV-19 
Type: Vaccine based on an adenovirus vaccine vector and the COVID-19 spike protein. After vaccination, the surface spike protein of the coronavirus is produced, which primes the immune system to attack the coronavirus if it later infects the body.
 
Status: University of Oxford’s Oxford Vaccine Group said March 27 it has started screening healthy volunteers (aged 18-55) for the upcoming COV001 trial (NCT04324606) assessing ChAdOx1 nCoV-19. The trial, a collaboration between the Group and the University’s Jenner Institute, is set to recruit up to 510 volunteers who will receive either the ChAdOx1 nCoV-19 vaccine or a control injection.
 
87. University of Queensland (UQ), CEPI, CSL Behring and Dynavax
 

Candidate: Vaccine
Type: “Molecular clamp” vaccine; UQ has isclosed work toward a version using CSL subsidiary Seqirus’ proprietary adjuvant technology, MF59®, as well as a version using Dynavax’s toll-like receptor 9 (TLR9) agonist adjuvant, CpG 1018™
 
Status: UQ on March 22 announced pledges of A$10 million ($6 million) from the government of Queensland, and A$3 million ($1.8 million) from Australia’s national government, toward accelerating development of its preclinical “molecular clamp” vaccine against COVID-19 by six months.The University said in February it achieved proof of concept showing the feasibility of using molecular clamp technology to engineer a vaccine candidate that could be more readily recognized by the immune system, triggering a protective immune response. Keith Chappell, PhD, told The Australian his team experimented with 250 different formulations before settling on a candidate vaccine virus. UQ plans to produce greater quantities of the vaccine to enable additional testing, then advance to investigational clinical testing after the middle of the year.
 
88. University of Saskatchewan (USask), Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac)
 
Candidate: Vaccine to protect against SARS-CoV-2 
Type: Not specified
 
Status: USask on March 13 said VIDO-InterVac researchers had successfully grown SARS-Cov-2 in a cell culture, and were testing the vaccine candidate in animals. VIDO-InterVac said it was collaborating with several labs in and outside Canada, including the National Microbiology Laboratory in Winnipeg. Volker Gerdts, DVM, director and CEO of VIDO-InterVac, said in a statement that resarchers hoped to have an indication by early April whether the vaccine generated at VIDO-InterVac can successfully protecting against SARS-coV-2. He anticipated another six months of testing, development and manufacturing would be needed before the vaccine would be ready for clinical testing. VIDO-InterVac said it is working to build a pilot-scale manufacturing facility within its Level 3 containment facility. VIDO-InterVac received funding to start Phase 1 of the facility, but will need another C$10 million ($7 million) to fully establish the manufacturing facility to industry standards, Gerdts said.
 
89. University of Wisconsin-Madison, FluGen, and Bharat Biotech
 

Candidate: CoroFlu 
Type: Intranasal vaccine for COVID-19 based on FluGen vaccine candidate M2SR, with production scale-up by Bharat
 
Status
: UWMadison, FLuGen and Bharat said April 2 they had begun development and testing of CoroFlu, based on FluGen’s M2SR, a self-limiting version of the influenza virus that induces an immune response against the flu. M2SR was based on an invention by UW­Madison virologists and FluGen co-founders Yoshihiro Kawaoka, PhD, and Gabriele Neumann, PhD, with Kawaoka’s lab planning to insert gene sequences from SARS-CoV-2 into M2SR so that the new vaccine will also induce immunity against the coronavirus. The partners said they expect to refine the CoroFlu vaccine concept and carry out tests in animal models at UW–Madison over the next three to six months. Bharat Biotech of Hyderabad, India, will then begin production scale-up for safety and efficacy testing in humans. CoroFlu could be in human clinical trials by the fall of 2020, the partners added.
 
90. Vanderbilt University Medical Center (VUMC)
 

Candidates: Antibody-based treatments to protect people exposed to COVID-19. 
Types: To be identified. Researchers plan to rapidly isolate B cells producing antibodies targeting specific viral proteins. The monoclonal antibodies will be studied to find those capable of neutralizing SARS-CoV-2.
 
Status: VUMC said March 23 its Vanderbilt Vaccine Center (VVC) is building a comprehensive “toolkit” designed to identify and analyze antibodies isolated from the blood of survivors for their ability to neutralize SARS-CoV-2. With corporate, academic, and government partners, VVC is analyzing the antibodies based on their ability to inhibit the virus, with plans to develop and manufacture the most promising lead antibodies and advance them into clinical study. “Our goal is to prepare antibodies for human clinical trials by this summer,” VVC director James Crowe, MD, stated.
 
91. Vaxart and Emergent BioSolutions
 

Candidates: Five vaccines based on proprietary VAAST™ Platform 
Type: Oral recombinant vaccines administered by room temperature-stable tablet
 
Status: Vaxart on March 31 disclosed that it had produced five COVID-19 vaccine candidates for testing in its preclinical models. Each vaccine construct is based on a different coronavirus antigen combination, Vaxart said, adding that it expects to advance the best performing vaccine to manufacturing for clinical trials. Earlier in March, Vaxart agreed to use the “molecule-to-market” contract development and manufacturing (CDMO) services of Emergent BioSolutions in preparation for cGMP production of a vaccine. Those development services have since started, with Emergent expected to produce bulk cGMP vaccine for use in a Phase I study that Vaxart said it expects to initiate early in the second half of 2020. Vaxart also said it was prioritizing development of the COVID-19 vaccine by putting several vaccine programs on hold, including its therapeutic HPV vaccine program and a norovirus vaccine program for which the company completed a successful Phase I study, and was actively seeking a development partner.The company cited a study published in The Lancet Infectious Diseases, showing that the Vaxart oral H1 influenza tablet vaccine primarily protected against infection based on mucosal immunity, compared with the injectable flu vaccine that protected primarily through systemic immunity.
 
92. VBI Vaccines and National Research Council of Canada (NRC)
 
Candidate: Pan-coronavirus vaccine targeting COVID-19, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). 
Type: Multivalent vaccine candidate based on VBI’s virus-like particle (eVLP) platform technology, and designed to co-express SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins on the same particle
 
Status: Cambridge, MA-based VBI Vaccines on March 31 announced its vaccine development collaboration with NRC, Canada’s largest federal research and development organization. The collaboration will combine VBI’s viral vaccine expertise, eVLP technology platform, and coronavirus antigens with the NRC’s COVID-19 antigens and assay development capabilities. The NRC and VBI agreed to evaluate and select the optimal vaccine candidate. Following IND-enabling preclinical studies conducted at both the NRC’s core facilities and VBI’s research facility in Ottawa, ON, VBI said it believes clinical study materials could be available in the fourth quarter.
 
93. VERO Biotech
 

Candidate: GENOSYL® (nitric oxide) gas with GENOSYL DS delivery system
Type: Inhaled nitric oxide plus tankless delivery system
 
Status: VERO Biotech said March 24 that the first patient with COVID-19 infection complicating pulmonary hypertension has been treated with GENOSYL via the GENOSYL DS at home, under an emergency IND approved by the FDA. The patient was also treated with oxygen via nasal canula, and monitored remotely by clinicians. Two days later, VERO said the FDA granted the company “expanded access emergency use” allowing GENOSYL DS, to immediately be used for the treatment of cardiopulmonary symptoms associated with COVID-19.
 
94. Walter Reed Army Institute of Research and U.S. Army Medical Research Institute of Infectious Diseases
 
Candidates: Five vaccines to protect from COVID-19 
Types: Not specified
 
Status: Secretary of the Army Ryan D. McCarthy said March 19 that the U.S. Army Medical Research and Development Command and U.S. Army Medical Research Institute of Infectious Diseases were working to develop five separate COVID-19 vaccines. McCarthy said the Army had received an additional $900 million toward efforts to prevent, detect, and treat the disease.
 
95. Xijing Hospital and Massachusetts General Hospital
 

Candidate: Inhaled nitric oxide (iNO) for treatment of mild/moderate COVID-19
Type: Inhaled nitric oxide as a supportive measure for COVID-19 patients with associated pulmonary complications based on formulations shown to have successfully treated patients with SARS-CoV, due to its genomic similarity to SARS-CoV-2
 
Status: Xijing and MGH have launched two Phase II trials assessing inhaled nitric oxide in patients with mild/moderate COVID-19 (NCT04290871, withdrawn March 24; and NCT04305457, recruiting patients). A day later, the nitric oxide delivery device developer Nu-Med Plus said it was closely monitoring the trials, and had talks with the FDA about bringing its products to market more quickly. Nu-Med has also had talks with the U.S. Department of Veterans Affairs about research opportunities related to iNO technology and COVID-19.
 
96. AJ Vaccines
 
Candidate: Vaccine to prevent COVID-19 
Type: Not specified
 
Status: AJ Vaccines said March 6 it would develop a COVID-19 vaccine designed to use “the best possibly designed” antigens to mimic closely the authentic native structures of the virus. “The use of such technology is expected to induce the relevant immune responses and therefore protect against disease with a lower risk for side effects,” COO Jerome Cabannes stated.
 
97. Applied DNA Sciences and Takis Biotech
 
Candidate: Linear DNA vaccine 
Type: To be based on PCR-produced linear DNA designed to induce antibodies that can neutralize SARS-CoV-2. Four preclinical vaccines have been designed based on the structure of the “Spike” protein, which enables uptake of the coronavirus by binding to specific receptors on the host cells.
 
Status: Applied DNA said March 24 that it filed a provisional patent application with the U.S. Patent and Trademark Office (USPTO) for its diagnostic assay under development for SARS-CoV-2—five days after announcing it had completed the design of the assay. The assay uses PCR-based detection of viral sequences that code for the Spike protein that is also the target of Applied DNA’s vaccine candidate partnered with Takis Biotech. Rome-based Takis has won approval from the Italy’s Ministry of Health to begin a preclinical trial of Applied DNA’s COVID-19 vaccine candidate, with the first results expected to be available in April. Applied DNA began large-scale production of the four vaccine candidates in March via the company’s proprietary PCR-based DNA (“LinearDNA”) manufacturing systems. 
 
98. Arcturus Therapeutics and Duke-NUS
 

Candidate: LUNAR-COV19 
Type: Very low dose, potential single-shot, self-replicating mRNA vaccine devoid of viral material or co-adjuvants. The vaccine is based on its STARR™ (Self-Transcribing And Replicating RNA), which combines self-replicating RNA with LUNAR® (Lipid-enabled and Unlocked Nucleomonomer Agent modified RNA) lipid-mediated delivery system into a single solution to produce proteins inside the human body.
 
Status: Arcturus on April 9 announced plans to initiate a human clinical trial this summer for LUNAR-COV19. Under the guidance of the Singapore Health Sciences Authority (HSA), the trial plans to enroll up to 76 healthy volunteer adults including elderly individuals, with follow-up over several months to evaluate extent and duration of immune response. The initial GMP batch is to be delivered in June.
 
99. AstraZeneca
 
Candidate: Monoclonal antibodies to prevent COVID-19 disease. 
Type: Coronavirus-neutralizing antibodies developed through the company’s program to use the Defense Advances Research Project Agency’s Pandemic Prevention Platform (P3).
 
Status
: AstraZeneca said April 8 it is exploring three potential sources for antibodies against SARS CoV-2: Patients who have recovered from COVID-19, immunized humanized mice, and lab techniques such as phage display: “AstraZeneca is aiming for clinical evaluation in the next 3 to 5 months.”
 
100. Bellerophon Therapeutics
 
Candidate: INOpulse®
Type: Portable inhaled nitric oxide system (iNO) for the treatment of COVID-19. INOpulse has generated positive top-line Phase II results in pulmonary hypertension associated with pulmonary fibrosis (PH-PF), with a pivotal Phase III trial planned.
 
Status: Bellerophon on April 8 said it submitted an IND to the FDA for clinical trials of INOpulse, with plans for an up-to-500 patient randomized, open-label study (PULSE-CVD19-001) for which the company has applied for funding to the NIH and the Biomedical Advanced Research and Development Authority (BARDA). Three COVID-19 patients have completed treatment with INOpulse under an emergency expanded access program while several other patients are now on the therapy. On March 31, the company said it treated its first COVID-19-diagnosed patient diagnosed with INOpulse at the University of Miami School of Medicine, after the FDA granted the company emergency expanded access allowing immediate use of the inhaled nitric oxide system to treat COVID19 patients under the care and supervision of their physician. Bellerophon noted that SARS-CoV-2 is approximately 82% identical to severe acute respiratory syndrome related coronavirus (SARS-CoV), the virus behind the 2003-04 global SARS outbreak. The company cited past studies showing that nitric oxide could benefit SARS-CoV patients by preventing viral replication, improving arterial oxygenation, reducing the need for ventilation support, and preventing the proliferation of lung infiltrates.
 
101. Beroni Group
 

Candidate: Nanobody-based treatment
Type: Modified nanobody
 
Status: Beroni Group on April 3 said that its SARS-CoV-2 IgG/IgM Antibody Detection Kit received CE certification in Europe. The test, based on colloidal gold, is a rapid single-use immunochromatographic test intended for the qualitative detection of IgG and IgM protein from the SARS-CoV-2 virus in capillary “fingerstick” whole blood, plasma, and serum samples. The kit is designed to yield results in 10 minutes, and according to the company has a 97% accuracy rate.
 
102. BeyondSpring
 
Candidate: BPI-002
Type: Novel oral small molecule T-cell co-stimulator
 
Status: BeyondSpring said March 11 it submitted a provisional U.S. patent application designed to protect BPI-002 for methods of treating viral infections, including COVID-19, when administered alone or in combination with a vaccine. According to the company, BPI-002 can potentially activate the adaptive immune system (including CD4+ helper T cells and CD8+ cytotoxic T cells) to directly attack and kill virally infected cells, including RNA virus, such as those causing COVID-19. If combined with a vaccine including COVID-19 vaccine, BeyondSpring reasons, BPI-002 could function as an adjuvant to provide improved long-term humoral (B-cell dependent) protection against future viral infection.
 
103. BioAegis Therapeutics
 

Candidate: rhu-pGSN
Type: Recombinant human plasma gelsolin therapy based on intellectual property licensed from Harvard Medical School
 
Status
: BioAegis on April 2 said it is submitting requests to the FDA and other regulators seeking to accelerate clinical trials of its lead product rhu-pGSN in severe infection, specifically severe community-acquired pneumonia (sCAP), including COVID-19, and has engaged “leading” infectious disease experts to advise the proof of concept clinical trial strategy. The company reasons that administering rhu-pGSN as an adjunct to standard-of-care measures could prevent or limit organ injury and death in patients with severe coronavirus infections. BioAegis said plasma gelsolin has been tested in over 20 animal studies, as well as a recent phase Ib/IIa study in hospitalized community-acquired pneumonia patients with no adverse safety signals.
 
104. Biocad
 

Candidates: Vaccine to emerge from three options in development 
Type: mRNA vaccine based on previous pipelines for creation of mRNA-oncovaccines, an area where the company has specialized.
 
Status: Biocad said March 19 it was working to develop a COVID-19 vaccine, with the first animal studies scheduled for the end of April. Biocad disclosed that researchers from the Dongfang Hospital at Shanghai Tongji University and Chinese biotechnology company Stemirna have been working on the vaccine since the end of January, synthesizing matrix ribonucleic acid (mRNA) with several sequences of different antigens. The company said its vaccine can be manufactured in “less than five to six months” since it uses mRNA as opposed to recombinant proteins.
 
105. BioCryst Pharmaceuticals
 

Candidate: Galidesivir (BCX4430) 
Type: Nucleoside RNA polymerase inhibitor designed to disrupt the viral replication process
 
Status: BioCryst said April 9 it has begun enrolling patients into a randomized, double-blind, placebo-controlled clinical trial to assess the safety, clinical impact and antiviral effects of galidesivir in patients with COVID-19. The trial, which will study 24 hospitalized adults diagnosed with moderate to severe COVID-19, is being funded by the NIH’s National Institute of Allergy and Infectious Diseases (NIAID).
 
106. BioXyTran
 
Candidate
: BXT-10
Type: Polysaccharide galectin inhibitor designed to restore the adaptive immune system to normal function by binding to and neutralizing Galectin-3 and Galectin-1. Binding activity is localized to the galactose containing side branches, preventing the virus from entering the host cell, and thus modulating any existing cytokine storm. The company cites preclinical evidence that a galectin inhibitor can bind to the protein spikes of the coronavirus.
 
Status: Bioxytran on March 31 disclosed BXT-10’s expected mechanism of action against COVID-19 in a presentation that cited several studies published over the past five years indicating that Galectin-1 is implicated in viral pathogenesis. Studies in mice showed that mice share the same N-terminal domain as humans—and that both SARS and COVID-19 share the similar N-terminal domain. Bioxytran reasons that a galectin-1 inhibitor could bind to coronavirus spikes and reduce viral load.
 
107. Chongqing Sidemu Biotechnology Technology
 
Candidate
: Natural killer (NK) cell therapy
Type: Universal off-the-shelf NKG2D-ACE2 CAR-NK cells
 
Status: Chongqing Sidemu Biotechnology Technology and sponsor Chongqing Public Health Medical Center disclosed March 27 they are recruiting patients for an up to 90-patient Phase I/II clinical trial (NCT04324996) assessing the company’s universal off-the-shelf NKG2D-ACE2 CAR-NK cells secreting IL15 superagonist and granulocyte-macrophage colony-stimulating factor (GM-CSF)-neutralizing single-chain variable fragment (scFv).
 
108. Codagenix and Serum Institute of India
 

Candidate: Vaccine against CoVID-19 
Type: Live-attenuated vaccine
 
Status: Codagenix said February 13 it will collaborate with the Serum Institute of India to rapidly co-develop a COVID-19 vaccine, adding that it has already designed “multiple” novel coronavirus vaccine candidate genomes using its proprietary deoptimization technology, which can digitally generate a full-length, deoptimized genome based on the outbreak sequence 3–5 days after acquiring the sequence.
 
109. Cytovia Therapeutics and Macromoltek
 

Candidate: Natural Killer (NK) immunotherapy targeting SARS-CoV-2
Type: NK cells leveraging Cytovia’s proprietary bi-functional technology, developed by co-founder Jean Kadouche, PhD. and novel antibodies neutralizing or blocking SARS CoV2, designed by Macromoltek, a computational antibody discovery company. The selected bi-functional antibodies
 
Status: Cytovia and Macromoltek said April 7 it will expand its NK immunotherapy programs beyond cancer and infectious diseases to include COVID-19, with plans to select an NKI immunotherapy candidate to begin clinical trials by year’s end, and make it available to patients in 2021. The companies will use a bi-functional approach they said holds potential to minimize virus escape from the immune response, thereby inhibiting the intensification of the inflammation leading to Acute Respiratory Syndrome (ARS). The activation of NK cells through the NKp46 receptor aims to destroy the virus-infected cells while the other arm can either block the entry of the virus into epithelial cells or neutralize circulating viruses.
 
110. Emmaus Life Sciences
 

Candidate: Endari® (L-glutamine oral powder)
Type: Amino acid indicated to reduce the acute complications of sickle cell disease (SCD) in adult and pediatric patients 5 years of age and older.
 
Status: Emmaus said March 24 it is exploring whether Endari may be potentially beneficial to patients with COVID-19 as part of their oral rehydration therapy (ORT). According to the company, a study regarding ORT has suggested that an oral hydration solution containing glutamine and glucose might be superior to conventional glucose ORT in viral enteritis, but added that further research was warranted to confirm that hypothesis.
 
111. Enanta Pharmaceuticals
 

Candidate:Classified
Type: Existing antiviral and respiratory candidates, plus drugs to be discovered
 
Status: Enanta on March 13 said it had begun a program to discover direct-acting antiviral drug candidates to treat COVID-19, using a two-pronged approach: Testing compounds from its antiviral compound library for potential activity against the virus, and discovering new candidates by using its expertise in direct-acting antiviral mechanisms. Four days later, Baird Equity Research cited that strategy, and the company’s antiviral experience, in upgrading Enanta to “Outperform”: “In our view, Enanta’s core competencies are a perfect fit for tackling the COVID-19 pandemic, head on.”
Enanta also said it will launch a Phase II dose ranging study in pediatric respiratory syncytial virus (RSV) patients and a Phase II study in adult transplant patients with RSV, in addition to its ongoing Phase IIb RSVP study in adult outpatients with community-acquired RSV, noting that patients at higher risk for RSV such as older adults and people with weakened immune systems show a similar patient profile as patients with COVID-19.
 
112. EUSA Pharma/The Papa Giovanni XXIII Hospital
 

Candidate: Sylvant (siltuximab) 
Type: Monoclonal antibody targeting Interleukin-6 (IL-6), approved in the U.S., Europe, and other countries for the treatment of patients with multicentric Castleman disease (MCD).
 
Status: EUSA Pharma on April 1 announced initial preliminary results from the Papa Giovanni XXIII Hospital-sponsored SISCO (Siltuximab In Serious COVID-19) Study (NCT04322188). Interim data from the first 21 patients treated with Sylvant and followed for up to seven days showed that seven patients experienced a clinical improvement with a reduced need for oxygen support, while another nine patients saw their condition stabilize, indicated by no clinically relevant changes. C-Reactive Protein levels, a marker of systemic inflammation, declined from baseline through to Day 5 following treatment in all 16 patients who showed sufficient recorded values. The next phase of data will compare outcomes in matched case-control patients not treated with Sylvant, and is expected in coming weeks. Twenty-one patients were enrolled in the study, which evaluated Sylvant in COVID-19 patients who had developed serious respiratory complications.
 
113. Flow Pharma
 
Candidate: FlowVax™ COVID-19 
Type: Rapid synthetic peptide vaccine designed to protect against SARS-CoV-2 infection by targeting antigens at the center of the virus, which are least likely to mutate. FlowVax COVID-19 is an adjuvanted, room temperature stable, biodegradable microsphere peptide vaccine targeting nucleocapsid, loaded with a suite of 16 peptides with > 95% predicted world-wide population coverage. The vaccine can be given by injection or nasal spray.
 
Status: Flow Pharma said April 8 researchers at The University of Texas Medical Branch at Galveston (UTMB) at Galveston will begin testing FlowVax COVID-19 by challenging nonhuman primates with SARS-CoV-2 after the animals are vaccinated this month with FlowVax COVID-19.The company has posted a presentation on its website noting that its COVID-19 vaccine uses the same platform as its FlowVax Ebola targeting nucleocapsid that had been shown effective in a mouse model at UTMB.“Nucleocapsid proteins within COVID-19 contain multiple class I epitopes with predicted HLA [human leukocyte antigen] restrictions consistent with broad population coverage. A similar approach to a CTL [cytotoxic T-lymphocytes] vaccine design may be possible for that virus,” Flo Pharma Founder, CEO, and Director Reid Rubsamen MD, and colleagues concluded in a preprint paper posted March 9 on bioRxiv.
 
114. GigaGen
 

Candidate: rCIG (recombinant anti-coronavirus 19 hyperimmune gammaglobulin) 
Type: Recombinant polyclonal antibody therapy for the treatment of COVID-19.
 
Status: GigaGen on March 30 disclosed its effort to deveop rCIG, an intravenous therapy designed to reproduce whole antibody repertoires of recovered COVID-19 patients, including high concentrations of antibodies that target and prevent further replication of the COVID-19 virus. GigaGen uses its single-cell technology to capture and recreate complete libraries of antibodies from COVID-19 convalescent patients that can directly translate into antibody therapies—a method the company says is much more scalable than plasma from recovered COVID-19 patient donors since one person’s B cell repertoire can be used to generate a drug that treats millions of patients.Other advantages cited by GigaGen include a decreased risk of contamination, greater batch to batch consistency, and “hundreds-fold” higher potency than plasma-derived equivalents, which may yield better clinical outcomes.GigaGen is recruiting patients who have recovered from COVID-19 to donate blood for the development of rCIG.
 
115. GlaxoSmithKline (GSK) and Clover Biopharmaceuticals
 

Candidate: COVID-19 S-Trimer 
Type: Protein-based coronavirus vaccine
 
Status: GSK agreed to provide Clover with its pandemic adjuvant system for further evaluation of S-Trimer in preclinical studies, the companies said in February, under a research collaboration whose value was not disclosed. GSK reasons that Clover could rapidly scale-up and produce large-quantities of a new coronavirus vaccine since it has one of the largest in-house, commercial-scale cGMP biomanufacturing capabilities in China. On March 25, GSK said that Clover was one of five partner companies and research groups worldwide with which GSK is collaborating on COVID-19 vaccines using GSK’s vaccine adjuvant technology. GSK said it expected data to be reported from the collaborations over the next three months.
 
 116. Heat Biologics and University of Miami
 

Candidate: Vaccine to protect against SARS-CoV-2 and other coronaviruses 
Type: Vaccine based on Heat’s gp96 platform, designed to generate open docking sites for insertion of multiple SARS-CoV-2 antigens.
 
Status: Heat said March 23 that it will collaborate with University of Miami Miller School of Medicine to develop a proprietary UM COVID-19 point-of-care diagnostic test—more than two weeks after the partners agreed to develop a vaccine targeting SARS-CoV-2.
 
117. Helix Nanotechnologies
 
Candidate: Vaccine 
Type: Personalized vaccines using technology originally developed against cancer
 
Status: Helix will use the personalized vaccine technology it created over two years against cancer to fight COVID-19, co-founder and CEO Hannu Rajaniemi told The Wall Street Journal in a report updated March 15. Also last month, the company received an investment of undisclosed size from Sam Altman, advisor to Y Combinator and president of the Silicon Valley accelerator from 2014–2019.
 
118. Immune System Regulation (ISR) Holding and TCER
 
Candidate: Immunolid ISR50 
Type: Vaccine based on TCER AB’s platform technology for the production of proteins and ISR’s drug pipeline with immunostimulating immunolides.
 
Status: ISR said March 19 that it is partnering with TCER to develop a COVID-19 vaccine. Data from animal studies are expected to be ready during the second quarter of 2020, with the goal of starting testing in humans during the last quarter of this year. TCER conducts its research in close collaboration with
 
119. Imophoron
 
Candidates: Multiple COVID-19 vaccines
Type: Vaccines based on company’s ADDomer® platform, a synthetic, self-assembling, nature-inspired virus-like particle (VLP)
 
Status: Imophoron statesd on its website that preclinical trials of its vaccine candidates will begin “within weeks.” The U.K. startup, based at the Unit DX Incubator in Bristol, said it is looking for partners to further the development of the COVID-19 candidates and the ADDomer rapid-response platform for vaccines to combat present and future infectious diseases. Imophoron cites as advantages of its approach the avoidance of induction of disease-enhancing antibody responses, ready manufacture and thermostability, avoiding the need for cold chain storage.
 
 120. Israel Institute for Biological Research (IIBR)
 
Candidate: Vaccine to prevent COVID-19 
Type: Not specified
 
Status: IIBR’s vaccine prototype has begun to be tested on rodents at its biochemical defense lab, Reuters reported March 31, after Israeli Prime Minister Benjamin Netanyahu issued a statement saying he was informed of “significant progress” in designing the prototype by IIBR’s director Shmuel Shapira, MD.
 
121. Jagiellonian University (Malopolska Centre of Biotechnology) and Nanjing University
 
Candidate: HTCC (N-(2-hydroxypropyl)-3-trimethylammonium 47 chitosan chloride) 
Type: Antiviral compound designed to potentially inhibit 48 currently circulating coronaviruses
 
Status: Professor Krzysztof Pyrć, PhD, and colleagues at the Virogenetics Laboratory of Virology at Jagiellonian University’s Malopolska Centre of Biotechnology joined researchers from Nanjing University in publishing a March 31 preprint study in bioRxiv describing the antiviral activity of HTCC, which the researchers concluded may be used as a potential inhibitor of 48 highly pathogenic coronaviruses based on its inhibition of viral replication in Vero cells: “We believe that HTCC is a promising drug candidate that should be further studied, as it provides a ready-to-use solution for SARS-CoV-2 and future emerging coronaviruses.
 
122. Janssen Pharmaceutical Cos. (Johnson & Johnson)
 
Candidates: Prezista® (darunavir); Prezcobix™ (darunavir and cobicistat)
Types: HIV-1 protease inhibitor (darunavir); CYP3A inhibitor (cobicistat). Prezista and Prezcobix are approved treatments for HIV-1 infection.
 
Status: Johnson & Johnson confirmed March 16 that it was screening its marketed HIV treatment Prezista and other antiviral compounds to determine potential in vitro effect against SARS-CoV-2—and decried “anecdotal, unsubstantiated reports” that Prezista has antiviral effect against COVID-19. J&J emphasized that the drug “should not be administered without a boosting agent (ritonavir or cobicistat).” The company cited preliminary, unpublished results from a previously reported in-vitro experiment in asserting: “it is not likely [Prezista] will have significant activity against SARS-CoV-2 when administered at the approved safe and efficacious dose for the treatment of HIV-1 infection.” The company also cited results from a single center, open label, randomized, and controlled trial conducted at Shanghai Public Health Clinical Center of Prezista and cobicistat in treating laboratory-confirmed 30 COVID-19 patients, which it said showed that the combination was not effective. Janssen said in January it donated 300 boxes of Prezcobix to the Shanghai Public Health Clinical Center and Zhongnan Hospital of Wuhan University for use in research to support efforts in finding a solution against SARS-CoV-2. Another 50 boxes were provided to the Chinese Center for Disease Control and Prevention for laboratory-based investigations. Prezcobix is under study alone in one Chinese trial (NCT04252274), while another Chinese study is assessing Prezcobix compared with Kaletra (lopinavir/ritonavir) combined with thymosin a1 (ChiCTR2000029541). A Spanish trial is evaluating Prezcobix and chloroquine (NCT04304053), while a trial in Bangkok is assessing Prezcobix among numerous HIV protease inhibitors (THDMS-COVID19; NCT04303299).
 
123. Junshi Biosciences and Institute of Microbiology of the Chinese Academy of Sciences (IMCAS)
 

Candidate: Neutralizing antibodies
Type: Multiple strains of neutralizing antibodies (Nab) capable of keeping an infectious agent, usually a virus, from infecting a cell by neutralizing or inhibiting its biological effect. It could potentially facilitate virus clearance, altering the course of infection, Junshi reasons.
 
Status: Junshi Biosciences said March 20 that it signed a collaboration agreement with IMCAS to jointly develop neutralizing antibodies against COVID-19. The partners said they obtained multiple strains of neutralizing antibodies capable of effectively blocking viral invasion in laboratory assays and have conducted animal experiments. Preliminary in vitro and in vivo studies have verified the blocking activity of the NAb strains, Junshi said. The company added that it was verifying the preclinical toxicology and in vivo activity of the antibodies in order to file IND applications with regulatory agencies in and outside China.
 
124. Kamada
 
Candidate: Anti-Corona Immunoglobulin (IgG)
Type: Polyclonal immunoglobulin based on company’s proprietary plasma-derived IgG platform technology as a potential treatment for severely ill coronavirus patients. The treatment is expected to be produced from plasma derived from donors recovered from the virus, which is anticipated to include antibodies to COVID-19.
 
Status: Kamada on March 11 announced plans to initiate development of an Anti-Corona IgG, emphasizing that its development and manufacturing plans were “highly” dependent on the availability of hyper-immune plasma and on the treatment’s to-be-determined regulatory path. “We are working with the Israeli regulatory authorities and local medical institutions to advance our program,” Kamada CEO Amir London stated.
 
125. Mallinckrodt
 
Candidate: INOmax® (nitric oxide)
Type: Inhaled nitric oxide (iNO) indicated in the U.S. for term and near-term neonates with hypoxic respiratory failure associated with pulmonary hypertension.
 
Status
: Mallinckrodt said April 1 it was working with the FDA to make INOmax available to U.S. patients with pulmonary complications of COVID-19 “as quickly as possible through the appropriate regulatory mechanism.”
On March 12, Mallinckrodt said it was assessing “limited published evidence” of a potential role for its marketed INOmax as a supportive measure in treating patients with SARS-CoV-2 and associated pulmonary complications. The company cited a 2005 in vitro study showing iNO’s inhibitory effect on the replication cycle of severe acute respiratory syndrome-related coronavirus (SARS-CoV), and a 2004 study showing improved blood oxygenation, reduced supplemental oxygen, and reduced ventilator support in six SARS-CoV patients treated with iNO. Mallinckrodt said it had submitted information to the NIH about evaluating iNO in acute respiratory distress syndrome (ARDS), informed the Biomedical Advanced Research and Development Authority (BARDA) of its ongoing study, and begun early talks with the FDA on submitting a pre-IND package in support of the potential use of iNO in coronavirus-associated ARDS.
 
126. Migal Galilee Research Institute
 

Candidate: Vaccine against COVID-19 
Type: Oral vaccine for adults and children based on existing vaccine against avian coronavirus Infectious Bronchitis Virus (IBV)
 
Status: Chen Katz, PhD, research team leader with the Institute, told The Times of Israel on March 10 that the vaccine is on track to start months of clinical testing in “a few weeks.” Migal generated headlines February 27 by announcing “a scientific breakthrough” and expressing as its goal: “achieve safety approval in 90 days.” The Institute later clarified the breakthrough as its adapting for COVID-19 a convertible vaccine it spent four years researching with support from Israel’s Ministry of Science and Technology and Ministry of Agriculture.
 
127. Moleculin Biotech
 

Candidate: WP1122
Type: Prodrug of 2-DG (2-deoxy-D-glucose)

Status: Moleculin said March 17 it has partnered with the University of Texas Medical Branch at Galveston (UTMB) to conduct research on its lead candidate WP1122 and the rest of Moleculin’s patented portfolio of molecular inhibitors, for antiviral properties against COVID-19 and other viruses. The company cited a 2014 study showing 2-DG to be effective in treating porcine epidemic diarrhea virus (PEDV) infection. Three days later, Moleculin filed a new patent application covering the use of WP1122 and its analogs as therapies to limit the ability of coronavirus and other viruses to replicate. Moleculin agreed to supply WP1122 and related inhibitors, as well as technical support, while UTMB agreed to begin testing the candidates against various viral disease models, including COVID-19, in connection with the UTMB Center for Biodefense and Emerging Infectious Diseases.
 
128. Mount Sinai Health System and Harbour BioMed (HBM)
 
Candidates
: Monoclonal antibodies against the coronavirus SARS CoV 2 
Type: Fully human monoclonal antibodies using HBM’s H2L2 Harbour Mice® platform.
 
Status
: Mount Sinai and Harbour BioMed said March 6 they entered into a multi-year, multifaceted collaboration to generate monoclonal antibodies against SARS CoV 2 as well as develop novel, fully human antibodies to prevent and treat diseases in areas that include oncology and immunology.
 
129. Novan
 
Candidate: Topical oral or nasal treatment for COVID-19
Type: Nitric oxide treatment designed to target the reduction of viral shedding and transmission.
 
Status: Novan on March 23 said it will explore the use of its NITRICIL™ technology toward a COVID-19 treatment. NITRICIL is designed to facilitate use of nitric oxide by controlling its level of storage, rate of release, and molecule size for targeted delivery. Through NITRICIL, nitric oxide is stored on large polymers that allow the gas to be applied as timed-release chemical entities.
 
130. OyaGen
 
Candidate: OYA1 
Type: Broad-spectrum antiviral showing activity in lab-based assays against SARS-CoV-2 and MERS-CoV, as well as dual target-specific antiviral activity against filoviruses such as Ebola. OYA1 won IND approval in the 1960s as a candidate to treat cancer, but showed a lack of efficacy.
 
Status: OyaGen on March 11 announced it will further study OYA1 for COVID-19 following unpublished positive results from collaborative research with the National Institute of Allergy and Infectious Diseases’ (NIAID) .
 
131. PrimeCell
 
Candidate: Remescor®
Type: Advanced Therapy Medicinal Product (ATMP) for human use, based on umenchenal cord-derived mesenchymal stromal cells (hUCT MSCs- Human Umbilical Cord Tissue Mesenchymal Stromal Cells)
 
Status: PrimeCell said March 27 that it finished research and submitted pharmaceutical documentation to the Czech national regulator of the pharma market, the State institute for drug control or SUKL, seeking to authorize compassionate use of Remescor. Remescor was developed as part of a joint project by PrimeCell in the labs of the National Center of Tissues and Cells (NATIC) with St. George’s University Hospital, and St. Anne’s University Hospital Brno, International Clinical Research Center (FNUSA-ICRC)
 
132. Q Biomed and Mannin Research
 

Candidate: MAN-01
Type: Potential first-in-class drug for Intraocular Eye Pressure in Primary Open Angle Glaucoma, is also being developed as an adjunct treatment for vascular leakage and endothelial dysfunction seen in COVID-19 and other infectious diseases, based on the lead platform of research partner Mannin Research, which is designed to target the activation of the Angiopoietin-Tie2 signaling pathway.
 
Status: In its Form 10-K annual report filed February 28, Q Biomed said MAN-01’s mechanism of action may ameliorate vessel damage in diseases that include “infectious diseases, such as influenza and the current coronavirus outbreak.” Q Biomed and Mannin Research announced their collaboration on February 4.
 
133. Shanghai Hengrui Pharmaceutical
 
Candidate: Combination of anti-PD-1 antibody and thymosin 
Type: Humanized monoclonal antibody targeting PD-1; 5-Da polypeptide hormone secreted by the thymus gland (thymosin)
 
Status
: Chinese clinical trials assessing the combination treatment have been registered by Wuhan Jinyintan Hospital (Wuhan Infectious Diseases Hospital), which identified the anti-PD-1 antibody it is assessing as camrelizumab (120 patients; ChiCTR2000029806); West China Hospital, Sichuan University (ChiCTR2000030028); and Southeast University (120 patients; NCT04268537).
 
134. Sinovac Biotech
 

Candidate: Vaccine targeting SARS-CoV-2 
Type: Formaldehyde inactivated vaccine with alum adjuvant
 
Status: Sinovac’s website discloses that the company is developing a vaccine against SARS-CoV-2, but offers little additional information beyond that offered by the World Health Organization. The vaccine type is similar to a Phase I vaccine candidate developed by Sinovac against SARS in the early 2000s.
 
135. Soligenix and University of Hawaiʻi (UH) at Mānoa
 

Candidate: Vaccine to prevent COVID-19 
Type: Vaccine based on heat stable subunit filovirus platform, with enhanced stability at elevated temperatures.
 
Status: Soligenix said March 23 its ongoing collaboration with UH Mānoa was expanding to include vaccines against COVID-19. The partners will use a vaccine platform that includes a viral surface glycoprotein designed to mediate entry and fusion of the virus with host cells and is manufactured with a proprietary insect cell expression system coupled with protein-specific affinity purification. The protein antigen is one of three essential components of the platform; the other two are an adjuvant shown to enhance both cell mediated and humoral immunity, and a formulation which enables thermostabilization of the resulting mixture, avoiding the need for cold chain storage and shipping.
 
136. Sorrento Therapeutics and Mabpharm
 

Candidate: STI-4920 (CMAB020) to treat COVID-19
Type: ACE-MABTM bi-specific fusion protein designed to bind to the spike protein of coronaviruses including SARS-CoV-2 and SARS-CoV which is expected to block SARS-CoV-2 from binding and infecting respiratory epithelial cells or ACE2-expressing cells to interrupt the viral life cycle.
 
Status: Sorrento said March 24 it will partner with Mabpharm to develop STI-4920, through a collaboration whose value was not disclosed. ACE-MABs have two functional arms: A fully human antibody that targets the spike protein of SARS-CoV-2 with high affinity, and a truncated ACE2 protein that binds to a different epitope of the spike protein. The fusion protein could also block the receptor binding domain with CD147 to mitigate lung inflammation and cytokine storm, according to Sorrento.
 
137. Sorrento Therapeutics and SmartPharm Therapeutics

Candidate: Vaccine to protect against SARS-CoV-2 infection 
Type: Next-generation, gene-encoded antibody vaccine
 
Status: Sorrento and SmartPharm said March 23 they will partner to develop a vaccine against COVID-19 by using monoclonal antibodies against SARS-CoV-2 discovered and/or generated by Sorrento that will be encoded into a gene for delivery using SmartPharm’s non-viral nanoparticle platform.
 
138. Stermirna Therapeutics and Shanghai East Hospital of Tongji University
 
Candidate: Vaccine targeting COVID-19
Type: mRNA vaccine targeting SARS-CoV-2
 
Status: Chinese news website Yicai.com reported February 10 that the mRNA vaccine being developed by Stermirna Therapeutics and Shanghai East Hospital of Tongji University had begun testing on animals, following approval on an urgent basis in January. Li Hangwen, CEO of Stermirna Therapeutics, told Xinhua in January that no more than 40 days will be needed to manufacture a vaccine sample.
 
139. Symvivo
 
Candidate: bacTRL-Spike 
Type: Bifidobacteria monovalent SARS-CoV-2 DNA oral vaccine for prevention of COVID-19
 
Status: Symvivo disclosed April 6 on ClinicalTrials.gov that it was recruiting up to 84 participants for an observer-blinded Phase I trial (NCT04334980) evaluating the safety, tolerability, and immunogenicity of bacTRL-Spike in healthy adults. The vaccine is produced using Symvivo’s platform, in which orally administered, genetically modified probiotic bacteria colonize the gut, bind directly to intestinal epithelial cells and constitutively replicate, secrete and deliver plasmid DNA molecules encoding antigenic transgenes and neutralizing nanobodies.
 
140. Tiziana Life Sciences
 
Candidate: TZLS-501 
Type: Fully-human anti-interleukin-6 receptor (anti-IL6R) monoclonal antibody (mAb) for treatment of patients infected with SARS-CoV-2, delivered directly into the lungs using a handheld inhaler or nebulizer.
 
Status: Tiziana said Aprl 9 it has submitted a provisional patent application for the delivery technology. The application covers treatment with the monoclonal antibody, as well as prophylactic intervention with a vaccine candidate, designed from Spike (S) protein of COVID-19. Tiziana acquired TZLS-501, formerly called NI-1201, from Novimmune in 2017 for undisclosed upfront, milestone, and future royalty payments: “We view NI-1201 as a potential game-changer for addressing the high unmet need of autoimmune and inflammatory diseases,” Tiziana Executive Chairman Gabriele Cerrone stated at the time.
 
141. Tianjin Sinobloway Biology
 
Candidate: IFN-alpha2b
Type: A form of interferon alpha that has been used to treat some patients with AIDS-related Kaposi sarcoma, hairy cell leukemia, and melanoma that has been removed by surgery, and some infections caused by viruses, such as hepatitis C virus.
 
Status: A team of Chinese, Canadian, and Australian researchers on April 10 published a preprint study in medRxiv showing that among 77 COVID-19 patients admitted to Union Hospital, Tongii Medical College in Wuhan, China, treatment with IFN-alpha2b with or without arbidol significantly reduced the duration of detectable virus in the upper respiratory tract and in parallel reduced duration of elevated blood levels for the inflammatory markers IL-6 and CRP. “These findings suggest that IFN-α2b should be further investigated as a therapy in COVID-19 cases,” the researchers concluded.
 
 
142. Tonix Pharmaceuticals Holding and Southern Research Institute
 
Candidate: TNX-1800 (live recombinant horsepox virus [rHPXV/SARS-CoV2-S3] vaccine from cell culture) 
Type: Live modified horsepox virus vaccine for percutaneous administration to protect against COVID-19
 
Status: Tonix said March 24 that it will partner with Southern Research to develop and test TNX-1800, which is designed to express the Spike protein from the SARS-CoV-2 virus. Tonix plans to test whether vaccination of animals with TNX-1800 will elicit an immune response to the SARS-CoV-2 Spike protein and if so, whether such an immune response will protect animals against COVID-19-like disease. The company expects preliminary animal data in the third quarter of 2020, “but the COVID-19 pandemic may lead to a delay in this timeline,” Tonix acknowledged.
 
143. Tulane University
 
Candidates: Treatments, vaccines.
Types: Classified
 
Status: The Tulane National Primate Research Center (TNPRC) said March 25 it was working on COVID-19 drugs, vaccines, and nanotechnology-based diagnostics, after becoming one of the first research facilities in the country to obtain approval from the U.S. Centers for Disease Control and Prevention (CDC) to receive live samples of COVID-19. TNPRC researchers are creating a nonhuman primate model to study COVID-19’s clinical progression, how it is transmitted through the air and how it specifically affects aging populations.
 
144. Union Therapeutics
 
Candidate: Niclosamide
Type: Novel “optimized salt” formulation of antihelminthic drug approved as a treatment for parasitic infections
 
Status: Union Therapeutics said April 12 it launched a program in partnership with Institut Pasteur Korea to test niclosamide, asserting that the drug showed potency more than 25 times higher than chloroquine and more than 40 times higher than Gilead Sciences’ remdesivir. A development program for niclosamide in COVID-19 being prepared for submission to Danish medical authorities, Union said. The drug is now the subject of a Phase IIb study in atopic dermatitis patients.
 
145. Vanda Pharma and University of Illinois at Chicago (UIC)
 
Candidate: Small molecules with the potential to treat COVID-19
Type: Small molecules that may prevent cathepsin-L cleavage of SARS-CoV-2 (COVID-19) glycoproteins that are required for viral processing in the host cell.
 
Status: Vanda on April 8 said it has launched a research partnership with UIC focused on the investigation of small molecules with the potential to treat COVID-19. In addition to studying cathepsin-L enzyme inhibition, Vanda said, the partners will also explore drugs that may block SARS-CoV-2 virus entry at the angiotensin converting enzyme 2 receptor, and the transmembrane protease serine 2 precursor. The partners plan to launch in New York a clinical trial called ODYSSEY, a study of tradipitant in hospitalized patients with severe COVID-19 pneumonia that was announced on April 2.
 
146. Vaxil
 
Candidate: Vaccine to protect against COVID-19 
Type: Vaccine based on signal peptide technology identified by Vaxil’s proprietary VaxHit™ bioinformatics platform, as well as in vivo experiments testing a tuberculosis signal peptide vaccine.
 
Status
: Vaxil on March 10 said it submitted a new patent application for its anti-infective vaccines platform following the discovery of its COVID-19 vaccine candidate discovery. The application (U.S 62/987,310) covers claims for a coronavirus vaccine that is intended to provide broad patent protection for novel vaccines, pharmaceutical compositions and methods of treating and preventing an infectious disease as well as methods for producing a peptide vaccine against coronaviruses, Vaxil said. Vaxil disclosed its COVID-19 vaccine candidate in February, saying that it planned to initiate non-GMP manufacturing followed by testing as the company explores partnerships and other possibilities.
 
147. Windtree Therapeutics
 
Candidate: KL4
Type: Proprietary synthetic, peptide-containing surfactant similar to human surfactant, approved by the FDA in a previous liquid dose formulation for respiratory distress syndrome in premature infants.
 
Status: Windtree said March 24 it will pursue the clinical study of its KL4 surfactant to potentially mitigate the pulmonary effects of severe COVID-19 infection. The company said it is actively pursuing several non-dilutive opportunities to fund this project, including government agencies and private foundations.
 
148. WPD Pharmaceuticals and CNS Pharma
 
Candidate: WP1122
Type: Prodrug of 2-deoxy-D-glucose (2-DG) whereby chemical elements are added to 2-DG to improve its delivery in vivo, then removed by normal metabolic processes.
 
Status: WPD on April 9 said independent research on WP1122 found 2-DG to reduce replication of SARS-CoV-2 by 100% in in vitro testing. WPD and CNS intend to move into clinical trials of WP1122 and other preclinical drugs on SARS-CoV-2 and other viruses. WPD has licensed a portfolio of drug candidates from Moleculin Biotech.
 
149. Zydus Cadila
 
Candidates: Vaccines targeting SARS-CoV-2 
Types: Two approaches in development. In one approach, plasmid DNA is introduced into the host cells for translation into the viral protein, designed to elicit a strong immune response mediated by the cellular and humoral arms of the human immune system. The other approach is a live attenuated recombinant measles virus vectored vaccine: The recombinant measles virus (rMV) produced by reverse genetics is expressed codon-optimized proteins of COVID-19 and induces long-term specific neutralizing antibodies, designed to provide protection from the infection.
 
Status: Zydus Cadila said February 15 it launched an accelerated research program. The company’s Vaccine Technology Centre in India is working on the plasmid DNA vaccine, while the company’s research arm in Europe, Etna Biotech is working on measles reverse genetics technology that had been successfully used in developing a SARS vaccine.
 
There are currently more than 1570 clinical trials planned or underway to seek possible therapeutic solutions for COVID-19. https://www.covid-trials.org/
 
Keep on logging to Thailand Medical News as we will be providing more updates on COVID-19 Drugs And Vaccines.
 
Help! Please help support this website by kindly making a donation to sustain this website and also all in all our initiatives to propel further researchhttps://www.thailandmedical.news/p/sponsorship
 
(Note: No part of this article may be reprinted, republished or quoted or extracted without giving due credit to Thailand Medical News. We also appreciate help from readers to help share our articles and site as we want more people to have access to all developments about the coronavirus which is being restricted by certain governments and social media platforms)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please help support this site by donating via paypal options below:

Make a Donation

MOST READ

Source: COVID-19 Blood Clots
May 20, 2020  2 months ago
Source : Thailand Medical news
Feb 05, 2020  5 months ago