The Site Is Undergoing Some Technical Changes.

BREAKING NEWS
Source: Latest COVID-19 News  May 27, 2021  25 days ago
COVID-19 News: Institut Pasteur Study Shows That B.1.1.7 Variant Induces Greater Degree of Inflammation!
COVID-19 News: Institut Pasteur Study Shows That B.1.1.7 Variant Induces Greater Degree of Inflammation!
Source: Latest COVID-19 News  May 27, 2021  25 days ago
COVID-19 News: A new study conducted by French researchers from the Institut Pasteur, Vaccine Research Institute-Creteil, Université de Paris, Hôpital Européen Georges Pompidou, Hôpital Vaugirard and Hôpital Corentin Celton has found that the SARS-CoV-2 UK variant B.1.1.7 induces a greater degree of inflammation in infected human hosts compared to other existing variants of concern (VOCs).


 
The study team analyzed viral release, anti-SARS-CoV-2 antibodies and cytokine production in a retrospective series of 427 RT–qPCR+ nasopharyngeal swabs collected in COVID-19 patients harboring either non-B.1.1.7 or B.1.17 variants.
 
They utilized a novel rapid assay, based on S-Fuse-T reporter cells, to quantify infectious SARS-CoV-2. With both non-B.1.1.7 and B.1.1.7 variants, viral titers were highly variable, ranging from 0 to >106 infectious units, and correlated with viral RNA levels. Lateral flow antigenic rapid diagnostic tests (RDTs) were positive in 96% of the samples harboring infectious virus.
 
It was found that about 67 % of individuals carried detectable infectious virus within the first two days after onset of symptoms. This proportion decreased overtime, and viable virus was detected up to 14 days. Samples containing anti-SARS-CoV-2 IgG or IgA did not generally harbor infectious virus. The proportion of individuals displaying viable virus or being RDT-positive was not higher with B.1.1.7 than with non-B.1.1.7 variants. Ct values were slightly but not significantly lower with B.1.1.7. The variant was characterized by a fast decrease of infectivity overtime and a marked release of 17 cytokines (including IFN-β, IP-10, IL-10 and TRAIL).
 
The study findings highlight differences between non-B.1.1.7 and B.1.1.7 variants. B.1.1.7 is associated with modified viral decays and cytokine profiles at the nasopharyngeal mucosae during symptomatic infection.
 
The study findings were published on a preprint server and are currently being peer reviewed. https://www.medrxiv.org/content/10.1101/2021.05.20.21257393v1.full.pdf
 
Ever since the COVID-19 disease was first detected in December 2019 in Wuhan, China, many different variants of its causative virus ie the SARS-CoV-2 coronavirus have emerged.
 
Equipped with increased viral fitness, some of these have risen to predominance over earlier variants in a remarkably short period of time.
 
This news study by a team of scientists at major institutions in France, examines the reasons behind this phenomenon in one such variant of concern (VOC), the so-called UK variant.
 
Typically known as the B.1.1.7 variant, the UK variant reproduces up to 90% more rapidly to produce secondary cases and may soon become the dominant lineage worldwide. The underlying biology responsible for this is unclear but may include a higher viral load and a longer infectious period.
 
Importantly viral shedding is closely related to infectious potential, and is known to be higher in B.1.1.7, which also shows a longer infectious period and a higher viral load. The current study focuses on the viral infectivity of this strain comp ared to others.
 
The study team examined the virus and cytokine loads in over 400 nasopharyngeal (NP) swabs that tested positive for SARS-CoV-2 by the reverse transcriptase-polymerase chain reaction (RT PCR). This test looks for genetic material – namely, viral ribonucleic acid (RNA).
 
The specimen swabs were from individuals infected by both UK and non-UK strains and were obtained at different days from symptom onset.
 
The detailed presence of the viral antigen was evaluated by a lateral flow antigen rapid diagnostic test (RDT). In addition, antibodies to the virus, both IgG and IgA, were measured in the samples. Finally, the titers of 48 cytokines were assessed.
 
The viral infectivity was measured by allowing the virus to infect cells expressing the angiotensin-converting enzyme 2 (ACE2) that binds the viral spike antigen, allowing viral entry. The cells were tagged with a fluorescent marker that lit up when the cells fused together to form syncytia, as expected following infection.
The specimen cells were engineered to express TMPRSS2, an enzyme that increases susceptibility to this virus by priming the spike glycoprotein.
 
Subsequently two sample sets of NP swabs were tested, one with 200 samples with PCR cycle thresholds (Ct) <40, collected in the period before the UK variant emerged. These sequences were assumed to belong to non-UK lineages. The second came from a later period, with ~23- samples that had Ct < 33, and seven with Ct > 33. This consisted of both UK and non-UK strains, at 70 and ~160 each.
 
It was found that both variants had Ct values below 22. In those carrying infectious viruses, the Ct was 17 and 19 for the UK and non-UK strains, respectively. Viral shedding occurred at a median of 2 days after symptoms began.
 
Interestingly in both cases, antibodies were detected only after 5 days, but before 10 days, in most cases, in NP swabs. Thus, the presence of antibodies seems to prevent the further presence of infectious virus, limiting viral shedding. This corroborates earlier findings that impaired antibody production allows prolonged viral shedding.
 
The study results in the first pre-B.1.1.7 samples set showed that samples varied widely in their infectivity. Over half had detectable infectious virus, though the viral loads ranged from 0 to 105- 6Infectious Units/mL (IU)/ml). The median titer was 1000 IU/mL.
 
It was found that the higher the infectious titer, the lower was the SARS-CoV-2 RNA load, as assessed by PCR Ct values. Conversely, the antigenic RDT was positive in over 90% of samples containing viable virus. That is, a positive RDT detected 93% of samples with detectable viable virus. A negative RDT would have 78% specificity, implying it would not report 22% of the negative samples correctly.
 
Interestingly Ct values were lower, at a median of 22, in samples with a positive RDT, compared to 31 in the positive cohort. This indicates that samples containing infectious virus have a more than 600-fold higher viral RNA content.
 
Also it was found that two out of three individuals were most likely to be infectious within the first few days of symptom onset, at a median of 2 days, when the Ct values were below 22.
 
However in the second sample set, RDT was positive in about 72-73% of samples, for both variants. Similarly, infectious virus was detectable in about 40-42% of samples with both variants. The presence of infectious viral particles predicted a positive RDT in 97% of cases.
 
Importantly viral shedding is known to begin up to six days before symptoms begin, but viral loads fall steadily thereafter. On day 2, detectable virus was present in similar fractions of the UK and non-UK variant groups.
 
But the UK variants tended to fall faster, perhaps indicating that peak infectivity occurs before symptoms began. This could not be confirmed as no pre-symptomatic samples were available and may be the result of somewhat lower viral titers, overall, with this variant.
 
In both sample types (containing the UK and non-UK variants), cytokines were evaluated, showing that some were increased in critical COVID-19 patients compared to those without such severe illness.
 
For some cytokines, such as IFNa2, the levels were lower as Ct values rose for both UK and non-UK variants.
 
Detailed analysis revealed that this increase in the number of cytokines occurred mainly in patients infected with the UK strain. These included beta-interferon, granzyme B, several interleukins such as IL-10, IL-13 and IL-15, and the growth factor GM-CSF that stimulates the growth of white cells other than lymphocytes in the blood.
 
The research used a novel cell culture with a reporter system with enhanced susceptibility to SARS-CoV-2 infection via TMPRSS2 expression by forming fluorescent syncytia within 24 hours. This assay is also more convenient since it is partly automated, and can be applied to different clinical samples.
 
In addition to infectious virus, RT PCR, RDT, antibody titers and cytokine concentrations were also measured to visualize how long infectivity persists in NP swabs, with either UK or non-UK variants. The determinants of such shedding were also evaluated.
 
The study findings show that about half the patients were infectious at the time of sample collection.
 
Surprisingly this is in contrast to an earlier study that shows less than 10% infectivity in hospitalized patients, though another, presumably less efficient, assay was used for viral detection.
 
It was found however that the viable virus is shed only until antibody production begins, and long-term shedding may comprise viral remnants rather than infectious viruses. Viable virus particles were mostly detected within ten days, with a few samples going up to 14 days, indicating a longer period of infectivity than earlier observed.
 
Alarmingly this contrasts with earlier studies, where live virus has not been observed beyond 8-9 days, though this may be due to the low sensitivity of the cell-based assay method used. Exceptions to this were in patients with impaired immunity and one patient with severe COVID-19.
 
Although the different variants failed to show any marked differences in peak infectivity and viral shedding, the B.1.1.7 variant appears to show a faster decrease in infectivity over time.
 
Importantly, higher levels of cytokines were obvious in samples containing B.1.1.7. This indicates that this variant may produce a more intense inflammatory reaction leading to more severe disease.
 
Coincidently this reflects the findings of some animal studies, where IL-6, IL-10 and IFN-γ were much higher in hamsters infected with the UK variant but not with three other strains.
 
Detailed studies are warranted to look into the correlation between cytokine levels and transmissibility or viral shedding. Also, the comparability of NP cytokines with levels in blood samples should be examined, as immunologic studies suggest that immune responses to the infection tend to be localized to the infected tissue.
 
Also wider studies, including asymptomatic patients, will help to assess whether these findings remain valid, since these individuals are responsible for most of the viral spread at the community level.
 
For the latest COVID-19 News, keep on logging to Thailand Medical News.
 

MOST READ

Aug 13, 2020  10 months ago
Source: Supplements For COVID-19
Feb 05, 2020  1 year ago
Source : Thailand Medical news
Feb 02, 2020  1 year ago
Source: Thailand Medical News

FROM GENOMICS AND EPIGENETICS

LATEST ON ARTHRITIS