Thailand Medical News - For All The Latest Breaking Medical News, Health News, Research News, COVID-19 News, Outbreak News, Dengue News, Glaucoma News, Diabetes News, Herb News, Phytochemical News, Heart And Cardiology News, Epigenetic News, Cancer News,

Source: COVID-19 Latest  Nov 11, 2020  3 years, 5 months, 3 days, 19 hours, 26 minutes ago

COVID-19 Latest: Yet Another Way SARS-CoV-2 Evades Immune Response, This Time By Using Its Orf6 Protein To Hijack The Nup98 Pathway

COVID-19 Latest: Yet Another Way SARS-CoV-2 Evades Immune Response, This Time By Using Its Orf6 Protein To Hijack The Nup98 Pathway
Source: COVID-19 Latest  Nov 11, 2020  3 years, 5 months, 3 days, 19 hours, 26 minutes ago
COVID-19 Latest: A new study led by researchers from Icahn School of Medicine-Mount Sinai with the support of scientist from University of Texas Southwestern Medical Center, University of Alberta-Canada, Vanderbilt University School of Medicine and Sanford Burnham Prebys Medical Discovery Institute, La Jolla- California have uncovered yet another way the SARS-CoV-2 is able to evade human host immune response this time by blocking  interferon signaling through using its Orf6 protein to hijack the Nup98 pathway.

SARS-CoV-2 is the causative agent of the ongoing COVID-19 pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host.
In this study, the researchers show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs).
The study findings demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. The study team found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, they show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together this study data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.
The research findings are published in the peer reviewed journal  of  the Proceedings of the National Academy of Sciences.
In order to successfully establish infection, viral pathogens have to overcome the interferon (IFN)-mediated antiviral response. Previous studies revealed that the viral accessory protein Orf6 of SARS-CoV and SARS-CoV-2 is able to inhibit STAT1 nuclear translocation to block IFN signaling.
The study team reports that Orf6 localizes at the nuclear pore complex (NPC) where it binds directly to the Nup98-Rae1 complex to target the nuclear import pathway and mediate this inhibition. A better understanding of the strategies used by viruses to subvert host immune responses is critical for the design of novel antivirals and vaccines.
The SARS-CoV-2 coronavirus belongs to the Betacoronavirus genus. Belonging to the same genus are SARS-CoV, with 79 percent genetic similarity, and Middle East respiratory syndrome coronavirus (MERS-CoV), with about 50 percent similarity. These viruses cause both upper and lower respiratory tract infections and may lead to severe and even life-threatening respiratory syndrome in humans. This condition often leads to a deranged immune response that can raise the levels of proinflammatory cytokines, cause a&n bsp;cytokine storm, and cause severe tissue damage.
Typically Interferons (IFNs) or cytokines released in response to the infection are classified into three groups:
-IFN-I (type I IFNs) – produced by any nucleated cell type and signal through the type I IFN receptor (IFNAR)
-IFN-II (type II IFNs) - produced by specialized immune cells and signal through IFN-γ receptor (IFNGR). They synergize between innate and adaptive immune responses
-IFN-III (type III IFNs) - bind to the IFN-λ receptor (IFNLR) found on epithelial cells seen in the respiratory and gastrointestinal tracts.
Type I and type III IFNs can be stimulated by pathogen-associated molecular patterns (PAMPs) using pattern recognition receptors (PRRs).
When the receptors bind, the two IFNs activate the JAK-STAT signaling cascade and activate STAT1 and STAT2 to form the IFN-stimulated gene factor 3 (ISGF3) transcriptional complex.
ISGF3 enters the nucleus by the karyopherin alpha 1 (KPNA1)-karyopherin beta 1 (KPNB1) heterodimer
It has been found that these karyopherins mediate cytoplasmic-nuclear translocation after interacting with proteins of the nuclear pore complex (NPC) termed nucleoporins or Nups
Within the nucleus, the ISGF3 binds to specific IFN-stimulated response elements (ISREs) in the DNA. This triggers the transcription of IFN-stimulated genes (ISGs), and the antiviral response is generated.
However STAT1, on the other hand, enters the nucleus and stimulates the ISGs by binding to gamma-activated site (GAS) promoter elements in the genes.
The study team explained that in SARS and COVID-19 patients, the levels of IFNs are low, and there are high levels of chemokines. In lab mice, it has been seen that IFN-I signaling was needed for ISG induction and proinflammation. This signaling was not responsible for controlling virus replication.
Thus SARS-CoV-2 was found to be resistant to IFN signaling. The team explains that accessory proteins Orf3b and Orf6 can inhibit IFN production and signaling. Thus the team speculates that evading the IFN-mediated antiviral signaling could help replication of SARS-CoV-2 and lead to its pathogenesis within the human host.
This research attempted to see if the SARS-CoV-2 could block the STAT1 and STAT2 nuclear translocation so as to block the induction of IFN-stimulated genes (ISGs).
Co researcher Dr Yi Ren, assistant professor of biochemistry, at Vanderbilt University researcher has undertaken previous work with influenza A and the vesicular stomatitis virus (VSV). These viruses also signal proteins such as interferons that mount an antiviral reaction.
Dr Ren told Thailand Medical News, , “From the literature review, I understood that I had the requisite specialist knowledge of how protein expression is block