Thailand Medical News - For All The Latest Breaking Medical News, Health News, Research News, COVID-19 News, Outbreak News, Dengue News, Glaucoma News, Diabetes News, Herb News, Phytochemical News, Heart And Cardiology News, Epigenetic News, Cancer News,

BREAKING NEWS
Source: Hong Kong University  Jan 16, 2019  5 years, 3 months, 3 days, 8 hours, 21 minutes ago

HKU Discovers A New Broad Spectrum Antiviral Drug, AM580

HKU Discovers A New Broad Spectrum Antiviral Drug, AM580
Source: Hong Kong University  Jan 16, 2019  5 years, 3 months, 3 days, 8 hours, 21 minutes ago
The world has been repeatedly plagued by infectious disease outbreaks, including SARS and MERS coronaviruses, avian influenza viruses, and Zika virus. A team at the Medical Faculty of The University of Hong Kong (HKUMed) led by Professor Yuen Kwok-yung and Dr Shuofeng Yuan of the Department of Microbiology, has discovered a novel broad-spectrum antiviral drug that would be strategic for epidemic control and early treatment with better clinical outcome.

HKU Discovers A New Broad Spectrum Antiviral

US provisional patent application has been filed for this important discovery. The finding is now published in a leading scientific journal Nature Communicatioms.

Background

It is difficult if not impossible to predict the coming virus epidemic. It will definitely come but do not know which virus. Thus it is not possible to develop a drug that will specifically inhibit that coming yet unknown virus. It would be ideal if we have an antiviral drug which targets a host pathway that is essential for virus replication. Our past experience shows that respiratory viruses are the most likely emerging virus that can cause huge morbidity, mortality and socioeconomic disruption such as the 1997 H5N1 and 2013 H7N9 avian influenza viruses, and the 2003 SARS and 2012 MERS coronaviruses. The study of these diseases and their pathology showed that coronaviruses often use the lipid membrane synthesis pathway of human host to produce intracellular lipid membrane vesicles as the machinery for producing virus particles. If we can find a host target which control lipid production, we can find a drug that targets this host target and therefore stops virus replication.

Key findings

Using integrative transcriptomic and lipidomic analyses, it was shown that cellular lipid metabolism is profoundly upregulated with MERS coronavirus infection. Followed by this, a bioactive lipid library was screened and