Thailand Medical News - For All The Latest Breaking Medical News, Health News, Research News, COVID-19 News, Outbreak News, Dengue News, Glaucoma News, Diabetes News, Herb News, Phytochemical News, Heart And Cardiology News, Epigenetic News, Cancer News,

BREAKING NEWS
Source: SARS-CoV-2 Mutations  Nov 11, 2020  3 years, 5 months, 1 week, 3 hours, 11 minutes ago

BREAKING! SARS-CoV-2 Mutations: Washington University, Mayo and Harvard Scientist Identify New 48 SARS-CoV-2 RBD Mutations Resistant To Antibodies!

BREAKING! SARS-CoV-2 Mutations: Washington University, Mayo and Harvard Scientist Identify New 48 SARS-CoV-2 RBD Mutations Resistant To Antibodies!
Source: SARS-CoV-2 Mutations  Nov 11, 2020  3 years, 5 months, 1 week, 3 hours, 11 minutes ago
SARS-CoV-2 Mutations: Researchers from Washington University-St. Louis, Harvard Medical School and Mayo Clinic in a new study using a variety of monoclonal antibodies (mAbs) to understand the mutational landscape of resistance in the SARS-CoV-2 receptor-binding domains (RBD) have discovered 48 new mutations resistant to antibodies including 27 that are circulating in humans.


 
More worrisome is the fact that about 86 % of all isolates from the D614G strains that is currently most prevalent, have been found to have these antibody resistant mutations on them.
 
These newly discovered mutations can have massive implications on the vaccine and antibody therapeutics developments underway and also is issuing warning signals about the recently approved monoclonal protocol by the U.S. FDA and also all future monoclonal or cocktail antibody treatment protocols.
 
In the study, the most worrisome mutation was the E484 as it was to be resistant to neutralization by most sera. Another mutation that was also of concern was the S477 mutation especially the S477N emerging strains.
 
Although neutralizing antibodies against the SARS-CoV-2 spike (S) protein are a goal of most COVID-19 vaccines and being developed as therapeutics, escape mutations could compromise such countermeasures. To define the immune-mediated mutational landscape in S protein, the study team used a VSV-eGFP-SARS-CoV-2-S chimeric virus and 19 neutralizing monoclonal antibodies (mAbs) against the receptor binding domain (RBD) to generate 48 escape mutants.  These variants were mapped onto the RBD structure and evaluated for cross-resistance by convalescent human plasma. Although each mAb had unique resistance profiles, many shared residues within an epitope, as several variants were resistant to multiple mAbs. Remarkably, we identified mutants that escaped neutralization by convalescent human sera, suggesting that some humans induce a narrow repertoire of neutralizing antibodies. By comparing the antibody mediated mutational landscape in S protein with sequence variation in circulating SARS-CoV-2 strains, we identified single amino acid substitutions that could attenuate neutralizing immune responses in some humans.
 
The study findings were published on a preprint server and are currently being peer reviewed. https://www.biorxiv.org/content/10.1101/2020.11.06.372037v1
 
Utilizing a set of different monoclonal antibodies, the study team determined different mutations in the SARS-CoV-2 spike protein that leads to resistance. Understanding these resistant mutations is important in developing effective therapeutic strategies.
 
The SARS-CoV-2 coronavirus, responsible for the COVID-19 pandemic, infects host cells via the spike proteins on the virus surface. The N-terminal subunit (S1) plays a role in receptor binding and the C-terminal subunit (S2) helps in the virus-host cell membrane fusion.
 
It has been fou